

# **XRT8010**

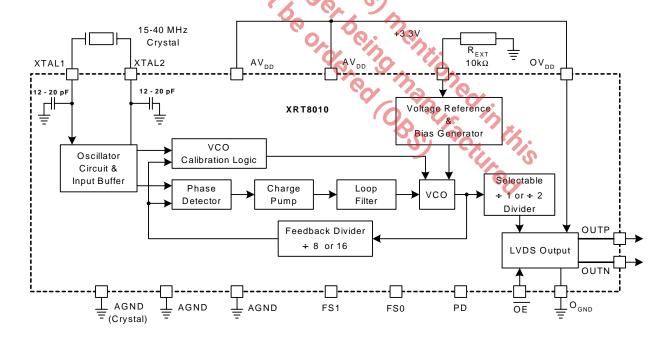
# 312MHZ CLOCK & CRYSTAL MULTIPLIER WITH LVDS OUTPUTS

NOVEMBER 2003 REV. 1.0.2

#### DESCRIPTION

The XRT8010 is a monolithic analog phase locked loop that provides a high frequency LVDS clock output, using a low frequency crystal or reference clock. It is designed for SONET/SDH and other low jitter applications. The high performance of the IC provides a very low jitter LVDS clock output up to 320 MHz, while operating at 3.3 volts. The XRT8010 has a selectable 8x or 16x internal multiplier for an external crystal or signal source. The Output Enable pin provides a true disconnect for the LVDS output. The very compact (4 x 4 mm) low inductance package is ideal for high frequency operation.

#### **APPLICATIONS**


- Gigabit Ethernet
- SONET/SDH
- SPI-4 Phase 2
- 8x or 16x Clock Multiplier for
  - Computer

■ Telecommunications Sytems

#### **FEATURES**

- 156 or 320 MHz Operating Range
- Low Output Jitter:
  - 0.0009 UI<sub>RMS</sub> typical @ 155.52 MHz, per Telcordia GR-253-CORE for OC-3.
- On Chip Crystal Oscillator Circuit
  - Optimized for 15 to 40 MHz crystals
  - Uses parallel fundamental mode
- Selectable 8x or 16x multiplier
- Selectable ÷1 or ÷2 LVDS output
- LVDS output meets TIA/EIA 644A Specification (2001)
- 3.3V Low power CMOS: <80 mW typical
- -40°C to +85°C operating temperature
- Extremely small 16-lead QFN package

FIGURE 1. XRT8010 BLOCK DIAGRAM





1 .... 12 1 .... 12 2 .... 11 XRT8010 .... 10 9

FIGURE 2. PIN-OUT OF THE XRT8010 (TOP VIEW)

# ORDERING INFORMATION

 $\infty$ 

| PART NUMBER | PACKAGE TYPE                                    | OPERATING TEMPERATURE RANGE |
|-------------|-------------------------------------------------|-----------------------------|
| XRT8010IL   | 16 LEAD QUAD FLAT NO LEAD<br>(4 mm x 4 mm, QFN) | -40°C to +85°C              |



# **TABLE OF CONTENTS**

| DESCRIPTION                                                                                 | 1  |
|---------------------------------------------------------------------------------------------|----|
| APPLICATIONS                                                                                |    |
| FEATURES                                                                                    |    |
| FIGURE 1. XRT8010 BLOCK DIAGRAM                                                             |    |
| FIGURE 2. PIN-OUT OF THE XRT8010 (TOP VIEW)                                                 |    |
| Ordering Information                                                                        |    |
| TABLE OF CONTENTS                                                                           |    |
| ABSOLUTE MAXIMUM RATINGS                                                                    |    |
| ELECTRICAL CHARACTERISTICS                                                                  |    |
| TABLE 1: CATEGORY II INTRINSIC JITTER PER TELCORDIA GR-253-CORE (AT 155MHz)                 |    |
| FIGURE 3. LVDS OUTPUT WAVEFORMS AND TEST CIRCUITS                                           |    |
| TABLE 2: FREQUENCY SELECTION TABLE                                                          | 5  |
| 1.0 CALIBRATION                                                                             | 6  |
| 2.0 CRYSTAL SELECTION                                                                       | 6  |
| 3.0 DATA AND PLOTS ?                                                                        | 6  |
| TABLE 3: POWER-DOWN AND OUTPUT TRI-STATE SELECTION TABLE                                    |    |
| FIGURE 4. INTRINSIC JITTER CONNECTION DIAGRAM                                               |    |
| FIGURE 5. SIMPLIFIED BLOCK DIAGRAM OF THE XRT8010 AND PECL RECEIVER                         | 7  |
| FIGURE 6. LVDS OUTPUT @160 MHz                                                              |    |
| FIGURE 7. LVDS OUTPUT @ 320 MHz                                                             | 9  |
| FIGURE 8. XRT8010 PHASE NOISE FOR 20 MH2 REFERENCE CRYSTAL                                  | 10 |
| ORDERING INFORMATION                                                                        | 11 |
| REVISIONS                                                                                   | 12 |
| FIGURE 8. XRT8010 PHASE NOISE FOR 20 MH2 REFERENCE CRYSTAL  ORDERING INFORMATION  REVISIONS |    |
|                                                                                             |    |

# **PIN DESCRIPTION**

| Pin | NAME   | Түре  | DESCRIPTION                                                   |
|-----|--------|-------|---------------------------------------------------------------|
| 1   | AVDD   |       | 3.3V ±10% Analog Supply for Crystal Oscillator                |
| 2   | AGND   |       | Analog Ground for Crystal Oscillator                          |
| 3   | XTAL1  | I     | Crystal pin 1 or external clock input                         |
| 4   | XTAL2  | 0     | Crystal pin 2 (output drive for crystal)                      |
| 5   | AGND   |       | Analog Ground                                                 |
| 6   | REXT   | I     | External Bias Resistor (10K $\Omega$ to ground)               |
| 7   | ŌĒ     | I     | Output Enable, Active low (Internal 50ΚΩ pull-down to ground) |
| 8   | PD     | 1     | Power Down, Active High (Internal 50KΩ pull-down to ground)   |
| 9   | FS1    | D     | Frequency select "1" (Internal 50KΩ pull-down to ground)      |
| 10  | FS0    | y Por | Frequency select "0" (Internal 50KΩ pull-up to VDD)           |
| 11  | AGND   | 60*   | Analog Ground                                                 |
| 12  | OGND 🥎 | 2 0   | Output Ground for LVDS outputs                                |
| 13  | OUTN   | 0     | LVDS negative output for $50\Omega$ line                      |
| 14  | OUTP   | 00    | LVDS positive output for $50\Omega$ line                      |
| 15  | OVDD   |       | 3.3V ±10% Digital Supply for LVDS Output buffer               |
| 16  | AVDD   |       | 3.3V ±10% Analog Supply                                       |

# ABSOLUTE MAXIMUM RATINGS

| Supply voltage        | -0.5 to 6.0 V    |
|-----------------------|------------------|
| VIN                   | -0.5 to 6.0 V    |
| Storage Temperature   | -65°C to + 150°C |
| Operating Temperature | -40°C to + 85°C  |
| ESD                   | 2,000 volts      |

# **ELECTRICAL CHARACTERISTICS**

| PARAMETER          | SYMBOL | Min | Түр | Max | Unit | Conditions                            |
|--------------------|--------|-----|-----|-----|------|---------------------------------------|
| Supply Voltage     | VDD    | 3.0 | 3.3 | 3.6 | V    |                                       |
| Supply current     | IDD    |     | 20  | 25  | mA   |                                       |
| Input Digital High | VINH   | 2.0 |     |     | V    |                                       |
| Input Digital Low  | VINL   |     |     | 0.8 | V    |                                       |
| Crystal Frequency  |        | 15  |     | 27  | MHz  | See Section 2,0 for Crystal Selection |
| Crystal Frequency  |        | 27  |     | 40  | MHz  | See Section 2,0 for Crystal Selection |



# 312MHZ CLOCK & CRYSTAL MULTIPLIER WITH LVDS OUTPUTS

| PARAMETER                              | SYMBOL      | Min  | Түр  | Max  | Unit | Conditions                                          |
|----------------------------------------|-------------|------|------|------|------|-----------------------------------------------------|
| Power on Calibration time              |             |      |      | 5    | ms   | After VDD reaches 2.8V                              |
|                                        |             |      |      |      |      | <b>Note:</b> Calibration time = 16,000 clock cycles |
| Max Frequency Out                      | FOUT        | 140  |      | 170  | MHz  | 156 MHz nominal FOUT (see Table 1)                  |
| Max Frequency Out                      | FOUT        | 285  |      | 340  | MHz  | 312 MHz nominal FOUT (see Table 1)                  |
| Rise time                              | TR          |      |      | 300  | ps   | CL = 5pF, RL = $100\Omega (20\% - 80\%)$            |
| Fall Time                              | TF          |      |      | 300  | ps   | CL = 5pF, RL = $100\Omega (20\% - 80\%)$            |
| Duty cycle                             |             | 45   |      | 55   | %    | LVDS output                                         |
| Differential Output Skew               | <i>&gt;</i> |      |      | 10   | ps   | See Figure 3                                        |
| Output Loading                         | 20          |      | 100  |      | Ω    |                                                     |
| Output voltage Swing                   | 0           | 250  |      | 450  | mV   | Differential (OUTP-OUTN)                            |
| Common Mode Voltage                    | VCM         | 9/1  | 1.2  |      | V    |                                                     |
| Output short circuit current           | -           | Ox ( | -5.7 | -8   | mA   | Current limit to ground, VDD or Vp to Vn            |
| Cycle-to-Cycle Jitter                  | 4n          | y Or | 3    |      | ps   | rms, at 156 MHz, Input referred                     |
| Cycle-to-Cycle Jitter                  |             | か    | 3    | Ô    | ps   | rms, at 312 MHz, Input referred                     |
| Intinsic Jitter                        |             | 3    | 16   | 9/1  | ps   | rms, over 1,000 cycles, at 156 MHz                  |
| Intinsic Jitter                        |             |      | 0.16 | 90 6 | ps   | rms, over 1,000 cycles, at 312 MHz                  |
| Spectral Density of Phase Noise $L(f)$ |             |      | OR   | 6    | ne   |                                                     |

|                                     | der andion             |                |
|-------------------------------------|------------------------|----------------|
| PARAMETER                           | Coversion              | TYPICAL        |
| Single Side Band Phase Noise $L(f)$ | 320MHz @ 100Hz Offset  | -77.75 dbc/Hz  |
|                                     | 320MHz @ 1kHz Offset   | -100.69 dbc/Hz |
|                                     | 320MHz @ 10kHz Offset  | -95.38 dbc/Hz  |
|                                     | 320MHz @ 100kHz Offset | -99.40 dbc/Hz  |
|                                     | 320MHz @ 1MHz Offset   | -105.05 dbc/Hz |
|                                     | 320MHz @ 10MHz Offset  | -119.03 dbc/Hz |

TABLE 1: CATEGORY II INTRINSIC JITTER PER TELCORDIA GR-253-CORE (AT 155MHz)

| JITTER BANDWIDTH | JITTER (RMS) | JITTER (UI <sub>RMS</sub> ) |
|------------------|--------------|-----------------------------|
| 12kHz - 1.3MHz   | 5.74         | 0.0009                      |
| 12kHz - 5MHz     | 7.89         | 0.0012                      |
| 12kHz - 20MHz    | 8.99         | 0.0014                      |

FIGURE 3. LVDS OUTPUT WAVEFORMS AND TEST CIRCUITS

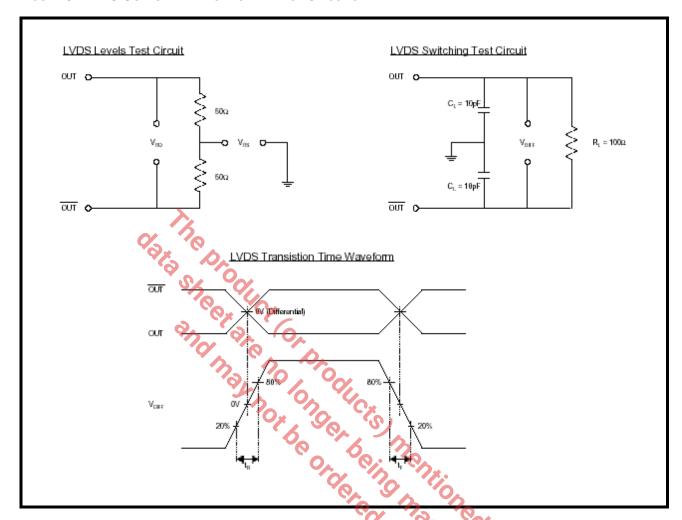



TABLE 2: FREQUENCY SELECTION TABLE

| FS0Pin 10 | FS1PIN 9 | CRYSTAL<br>FREQUENCY | INTERNAL<br>CAPACITOR | MULTIPLY<br>RATIO | OUTRUT<br>DIVIDE | FREQUENCY<br>OUTPUT |
|-----------|----------|----------------------|-----------------------|-------------------|------------------|---------------------|
| 1         | 1        | 39.0 MHz             | 12 pF                 | 8x                | 901              | 312 MHz             |
| 0         | 1        | 39.0 MHz             | 12 pF                 | 8x                | 2                | 156 MHz             |
| 1         | 0        | 19.5 MHz             | 20 pF                 | 16x               | 1                | 312 MHz             |
| 0         | 0        | 19.5 MHz             | 20 pF                 | 16x               | 2                | 156 MHz             |

# Notes:

- 1. Use Parallel Fundamental mode crystal
- 2. FS0 has a 50K $\Omega$  pull-up resistor to VDD on chip
- 3. FS1 has a  $50K\Omega$  pull-down resistor to ground on chip

| TABLE 3: POWER-DOWN AND  | <b>OUTPUT TRI-STATE SELECTION TABLE</b> |
|--------------------------|-----------------------------------------|
| TABLE 3. I OWEN DOWN AND | OUT OF TRESTATE SELECTION TABLE         |

| PD PIN 8 | OE PIN 7 | STATUS                                   | Notes                                                                     |
|----------|----------|------------------------------------------|---------------------------------------------------------------------------|
| 1        | Х        | Outputs tri-stated and chip Powered-down | "X" = don't care                                                          |
| 0        | 1        | Output tri-stated                        | PD and OE have a $50 \text{K}\Omega$ pull-down resistor to ground on chip |

#### 1.0 CALIBRATION

The XRT8010 synthesizer jitter performance is optimized by calibration of its Voltage Controlled Oscillator (VCO) upon initial power application. This power ON calibration procedure is automatic and completely transparent to the user. It is initiated automatically upon first application of VDD. In order to bring the center frequency of the VCO close to the desired output frequency, the VCO bias current is adjusted via a current DAC at initial power application. The center frequency of VCO is checked against input reference frequency and calibrated internally to the desired output frequency value. These bias voltage trim bits are then held in latches for as long as the VDD is held above 2.7V (minimum specified operational value of VDD). The user should note the following important facts about this calibration procedure for proper operation of the XRT8010:

- For proper operation of the chip and to achieve lowest jitter, the user should follow layout guidelines as described in the User Guide.
- An input crystal of appropriate frequency should be connected at XTAL1 and XTAL2 pins before power is applied to the chip.
- All VDD pins should be tied to 3.3V ±10% simultaneously.
- The power supply should turn on without bouncing below 2.0V smoothly to its specified value in no more than 50msec.
- The calibration takes place during VDD ramp up between 2.6V to 3V values. Once the VDD reaches and maintains 3.0V, the chip retains the calibrated VCO bias voltages in internal latches for proper operation.
- To change a widely different value of crystal or input reference frequency, it is recommended to power down the chip by bringing VDD to 0V and restarting after the change in frequency has occurred.

#### 2.0 CRYSTAL SELECTION

ne timing reference It is recommended that a Fundamental Mode Crystal be used as the timing reference of the XRT8010. The following part has been qualified by EXAR:

### **CITIZEN Quartz Crystals**

20 MHz: HCM49-20.000MABJT 40 MHz: HCM49-40.000MABJT

# 3.0 DATA AND PLOTS

All plots were recorded using the following parameters and test setup:

- VDD = 3.3 V
- 2" 100Ω Differential Transmission Lines (from LVDS outputs to receiver inputs)
- Fundamental Mode Crystal of 20 MHz
- Vref = 1.5 V (PECL Receiver)



FIGURE 4. INTRINSIC JITTER CONNECTION DIAGRAM

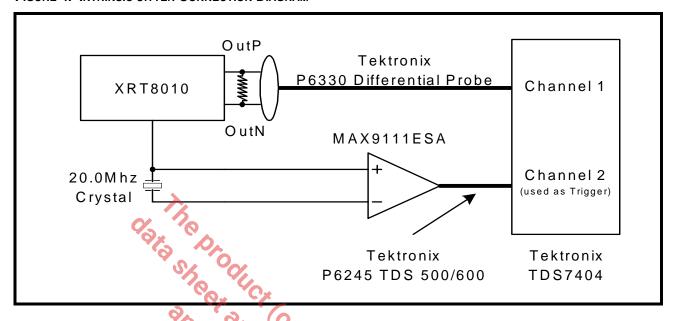
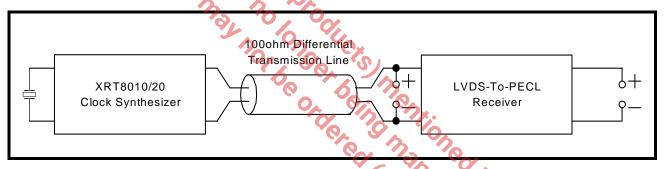
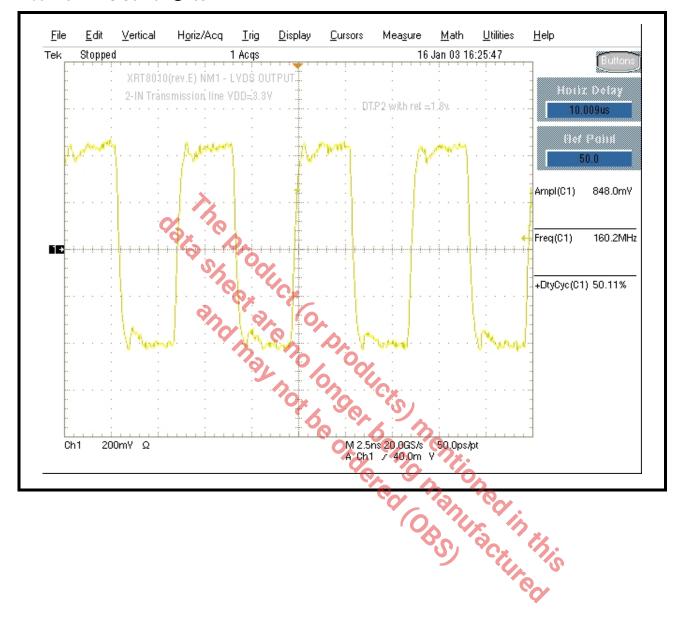
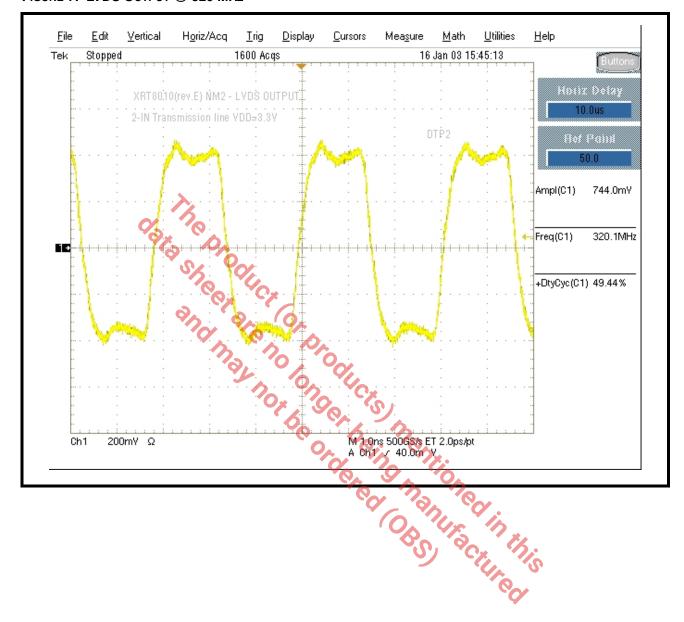




FIGURE 5. SIMPLIFIED BLOCK DIAGRAM OF THE XRT8010 AND PECL RECEIVER



**XY** EXAR

FIGURE 6. LVDS OUTPUT @160 MHz

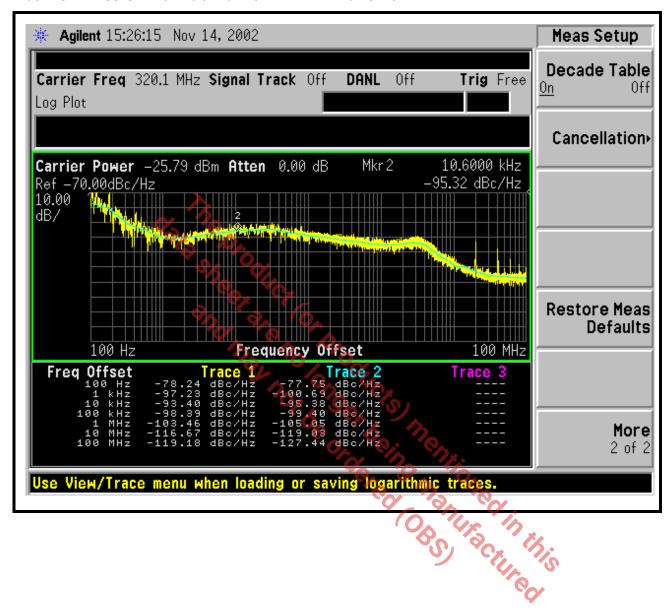
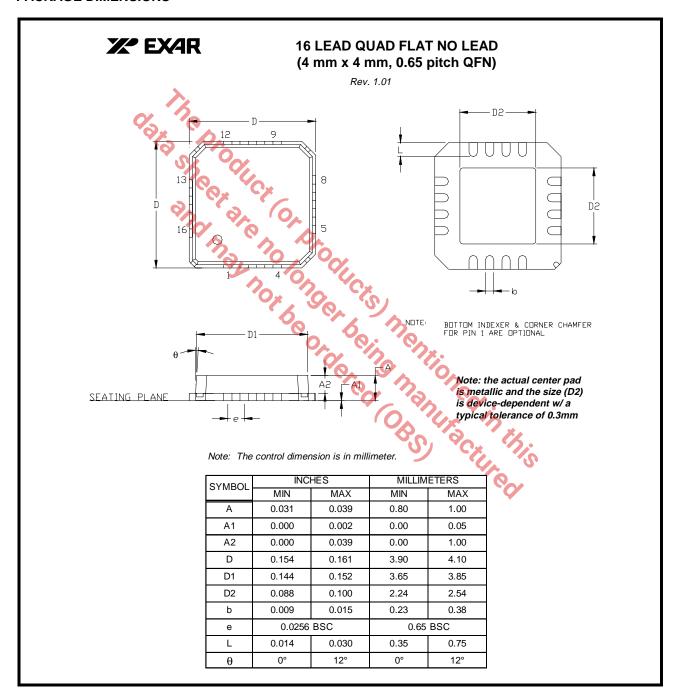




FIGURE 7. LVDS OUTPUT @ 320 MHz



**X** EXAR

FIGURE 8. XRT8010 PHASE NOISE FOR 20 MHz REFERENCE CRYSTAL






# ORDERING INFORMATION

| PART NUMBER | PACKAGE                   | OPERATING TEMPERATURE RANGE |
|-------------|---------------------------|-----------------------------|
| XRT8010IL   | 16 LEAD QUAD FLAT NO LEAD | -40°C to +85°C              |
|             | (4 mm x 4 mm, QFN)        |                             |

# **PACKAGE DIMENSIONS**





## **REVISIONS**

- P1.0.0 Original issue.
- P1.0.1 Modified Electrical Characteristics. Modified Figures
- 1.0.0 Final release. Added Category II intrinsic jitter measurements per Telcordia GR-253-CORE.
- 1.0.1 Changed the Page Numbering.
- 1.0.2 Changed the Package Drawing and Dimensions.



EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2003 EXAR Corporation

Datasheet November 2003.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.