

Comlinear® CLC1050, CLC2050, CLC4050 Low Power, 3V to 36V, Single/Dual/Quad Amplifiers

FEATURES

- **Unity gain stable**
- \blacksquare 100dB voltage gain
- **550kHz unity gain bandwidth**
- \blacksquare 0.5mA supply current
- 20nA input bias current
- 2mV input offset voltage
- \blacksquare 3V to 36V single supply voltage range
- $\pm 1.5V$ to $\pm 18V$ dual supply voltage range
- Input common mode voltage range includes ground
- \bullet 0V to V_S-1.5V output voltage swing CLC2050: improved replacement for industry standard LM358
- ⁿ CLC4050: Improved replacement for industry standard LM324
- CLC1050: Pb-free SOT23-5
- CLC2050: Pb-free SOIC-8
- ⁿ CLC4050: Pb-free SOIC-14

APPLICATIONS

- Battery Charger
- Active Filters
- **n** Transducer amplifiers
- ⁿ General purpose controllers
- ⁿ General purpose instruments

General Description

The COMLINEAR CLC1050 (single), CLC2050 (dual), and CLC4050 (quad) are voltage feedback amplifiers that are internally frequency compensated to provide unity gain stability. At unity gain (G=1), these amplifiers offer 550kHz of bandwidth. They consume only 0.5mA of supply current over the entire power supply operating range. The CLC1050, CLC2050, and CLC4050 are specifically designed to operate from single or dual supply voltages.

The COMLINEAR CLC1050, CLC2050, and CLC4050 offer a common mode voltage range that includes ground and a wide output voltage swing. The combination of low-power, high supply voltage range, and low supply current make these amplifiers well suited for many general purpose applications and as alternatives to several industry standard amplifiers on the market today.

Tal Application - Voltage Controlled Oscillator (VCO)

Ordering Information

Moisture sensitivity level for all parts is MSL-1.

CLC1050 Pin Configuration

CLC2050 Pin Configuration

CLC4050 Pin Configuration

CLC1050 Pin Assignments

CLC2050 Pin Configuration

CLC4050 Pin Configuration

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Reliability Information

Package thermal resistance (θ_{JA}) , JDEC standard, multi-layer test boards, still air.

Recommended Operating Conditions

Electrical Characteristics

T_A = 25°C (if **bold**, T_A = -40 to +85°C), V_s = +5V, -V_s = GND, R_f = R_g =2kΩ, R_L = 2kΩ to V_S/2, G = 2; unless otherwise noted.

Electrical Characteristics continued

T_A = 25°C (if **bold**, T_A = -40 to +85°C), V_s = +5V, -V_s = GND, R_f = R_g =2kΩ, R_L = 2kΩ to V_S/2, G = 2; unless otherwise noted.

Notes:

1. 100% tested at 25 $^{\circ}$ C. (Limits over the full temperature range are guaranteed by design.)

2. The input common mode voltage of either input signal voltage should be kept > 0.3V at 25°C. The upper end of the common-mode voltage range is +V_S - 1.5V at 25°C, but either or both inputs can go to +36V without damages, independent of the magnitude of V_S.

The protection of the common-mode value of the de the media should be kept > 0.3V at 25°C. The upper end of the common-mode
and sheet should be kept > 0.3V at 25°C. The upper end of the common-mode
of solicit damages, independent of the magnitude of V_S.
The data of t and may no foroducts) ment

Typical Performance Characteristics

 $T_A = 25$ °C, $+V_s = 30V$, $-V_s = GND$, $R_f = R_g = 2k\Omega$, $R_L = 2k\Omega$, $G = 2$; unless otherwise noted.

Non-Inverting Frequency Response Inverting Frequency Response

Typical Performance Characteristics

 $T_A = 25$ °C, $+V_s = 30V$, $-V_s = GND$, $R_f = R_g = 2k\Omega$, $R_L = 2k\Omega$, $G = 2$; unless otherwise noted.

Non-Inverting Frequency Response at $V_S = 5V$ Inverting Frequency Response at $V_S = 5V$

Typical Performance Characteristics - Continued

 $T_A = 25$ °C, $+V_s = 30V$, $-V_s = GND$, $R_f = R_g = 2k\Omega$, $R_L = 2k\Omega$, $G = 2$; unless otherwise noted.

Small Signal Pulse Response Large Signal Pulse Response

Typical Performance Characteristics - Continued

 $T_A = 25$ °C, $+V_s = 30V$, $-V_s = GND$, $R_f = R_g = 2k\Omega$, $R_L = 2k\Omega$, $G = 2$; unless otherwise noted.

Voltage Gain vs. Supply Voltage Input Current vs. Temperature

Application Information

Basic Operation

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations.

Figure 1. Typical Non-Inverting Gain Circuit

Figure 2. Typical Inverting Gain Circuit

Figure 3. Unity Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated 2k ohm load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_{JA} (Θ_{JA}) is used along with the total die power dissipation.

 $T_{\text{Junction}} = T_{\text{Ambient}} + (\Theta_{\text{JA}} \times P_{\text{D}})$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D , the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$
P_D = P_{\text{supply}} - P_{\text{load}}
$$

tion.

 V supply

Supply power is calculated by the standard power equa-

 $V_{\text{slupply}} \times I_{\text{RMS supply}}$

Power delivered to a purely resistive load is:

P_{load} $O((V_{LOAD})_{RMS^2})/R$ load_{eff}

The effective load resistor (Rload_{eff}) will need to include the effect of the feedback network. For instance,

Rload_{eff} in figure 3 would be calculated as:

$$
R_L || (R_f + R_g)
$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_D can be found from

 $P_D = P_{Ouiescent} + P_{Dvnamic} - P_{Load}$

Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{Supblv} . Load power can be calculated as above with the desired signal amplitudes using:

$(V_{LOAD})_{RMS} = V_{PEAK} / \sqrt{2}$

 $(I_{LOAD})_{RMS} = (V_{LOAD})_{RMS} /$ Rload_{eff}

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

 $P_{DYNAMIC} = (V_{S+} - V_{LOAD})_{RMS} \times (I_{LOAD})_{RMS}$

Assuming the load is referenced in the middle of the power rails or $V_{\text{supply}}/2$.

Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

Figure 4. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, Rs, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 5.

Figure 5. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in \lt =1dB peaking in the frequency response. The Frequency Response vs. C_1 plot, on page 6, illustrates the response of the CLCx050.

Table 1: Recommended R_S vs. C_I

For a given load capacitance, adjust R_S to optimize the tradeoff between settling time and bandwidth. In general, reducing R_S will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLCx050 will typically recover in less than 30ns from an overdrive condition. Figure 6 shows the CLC1050 in an overdriven condition. G and the method of the method of the product of the space of the space of the space of the inputs of the covery is the the amplifier to return to its normal or the covery is the maplifier to return to its normal or the co

Figure 6. Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8µF and 0.1µF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 7-14. These evaluation boards are built for dual- supply operation. Follow these steps to use the board in a single-supply application:

1. Short -Vs to ground.

2. Use C3 and C4, if the - V_S pin of the amplifier is not directly connected to the ground plane.

Figure 7. CEB002 Schematic

Figure 8. CEB002 Top View

Figure 10. CEB006 Schematic

 \cap

Figure 19. AC-Coupled Non-Inverting Amplifier

 \cap

Mechanical Dimensions

SOT23-5 Package

Mechanical Dimensions continued

SOIC-14 Package

For Further Assistance:

Exar Corporation Headquarters and Sales Offices

48720 Kato Road Tel.: +1 (510) 668-7000 Fremont, CA 94538 - USA Fax: +1 (510) 668-7001

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circui

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or dam Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

www.exar.com

 $SOIC-14$

ComLINEAR CLC1050, CLC2050, CLC4050 Low Power, 3V to 36V, Single/Dual/Quad Amplifiers

Low Power, 3V to 36V, Single/Dual/Quad Amplifiers

Rev

omlinear CLC1050, CLC2050, CLC4050