

CLC1005, CLC1015, CLC2005

Low Cost, +2.7V to 5.5V, 260MHz Rail-to-Rail Amplifiers

General Description

The CLC1005 (single), CLC1015 (single with disable), and CLC2005 (dual) are low cost, voltage feedback amplifiers. These amplifiers are designed to operate on +2.7V to +5V, or ±2.5V supplies. The input voltage range extends 300mV below the negative rail and 1.2V below the positive rail.

The CLC1005, CLC1015, and CLC2005 offer superior dynamic performance with 260MHz small signal bandwidth and 145V/µs slew rate. The amplifiers consume only 4.2mA of supply current per channel and the CLC1015 offers a disable supply current of only 127µA. The combination of low power, high output current drive, and rail-to-rail performance make these amplifiers well suited for battery-powered communication/computing systems.

The combination of low cost and high performance make the CLC1005, CLC1015, and CLC2005 suitable for high volume applications in both consumer and industrial applications such as interactive whiteboards, wireless phones, scanners, color copiers, and video transmission.

FEATURES

- 260MHz bandwidth
- Fully specified at +2.7V and +5V supplies
- Output voltage range:
 - \circ 0.036V to 4.953V; $V_S = +5$; $R_L = 2k\Omega$
- Input voltage range:
 - -0.3V to +3.8V; $V_S = +5$
- 145V/µs slew rate
- 4.2mA supply current
- Power down to 127µA
- ±55mA linear output current
- ±85mA short circuit current
- CLC2005 directly replaces AD8052/42/92 in single supply applications
- CLC1005 directly replaces AD8051/41/91

- Portable/battery-powered applications

Output Swing

2nd & 3rd Harmonic Distortion; $V_S = +2.7V$

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

V _S	0V to +6V
V _{IN} V _S - 0.5V t	o +V _S +0.5V

Operating Conditions

Supply Voltage Range	2.5 to 5.5V
Operating Temperature Range	40°C to 85°C
Junction Temperature	150°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10s)	260°C

Package Thermal Resistance

θ _{JA} (SOIC-8)	150°C/W
θ _{JA} (MSOP-8)	200°C/W
θ _{JA} (TSOT23-5)	215°C/W
θ _{JA} (TSOT23-6)	192°C/W
Package thermal resistance (θ_{JA}) , JEDEC standard,	multi-layer

SOIC-8 (HBM)2	.5kV
ESD Rating for HBM (Human Body Model) and CDM (Cha	rged

data sheet are or products) mentioned in this ordered (OBS) actured

Electrical Characteristics at +2.7V

 T_A = 25°C, V_S = +2.7V, R_f = 2k Ω , R_L = 2k Ω to $V_S/2;$ G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency D	Domain Response					
GBWP	-3dB Gain Bandwidth Product			86		MHz
UGBW	Unity Gain Bandwidth(1)	G = +1, V _{OUT} = 0.05V _{pp}		215		MHz
BW _{SS}	-3dB Bandwidth	G = +2, V _{OUT} = 0.2V _{pp}		85		MHz
BW _{LS}	Large Signal Bandwidth	G = +2, V _{OUT} = 2V _{pp}		36		MHz
Time Domai	in .			'		'
t _R , t _F	Rise and Fall Time (1)	V _{OUT} = 0.2V step; (10% to 90%)		3.7		ns
t _S	Settling Time to 0.1%	V _{OUT} = 1V step		40		ns
OS	Overshoot	V _{OUT} = 0.2V step		9		%
SR	Slew Rate	G = -1, 2.7V step		130		V/µs
Distortion/No	oise Response					
HD2	2nd Harmonic Distortion (4)	5MHz, V _{OUT} = 1V _{pp}		79		dBc
HD3	3rd Harmonic Distortion (1)	5MHz, V _{OUT} = 1V _{pp}		82		dBc
THD	Total Harmonic Distortion (1)	5MHz, V _{OUT} = 1V _{pp}		77		dB
e _n	Input Voltage Noise	>1MHz		16		nV/√Hz
i _n	Input Current Noise	>1MHz		1.3		pA/√Hz
X _{TALK}	Crosstalk ⁽¹⁾	CLC2005, 10MHz		65		dB
DC Performa	ance	7- %				
V _{IO}	Input Offset Voltage			-1.6		mV
d _{VIO}	Average Drift	2 2 40"		10		μV/°C
I _B	Input Bias Current	0, 0, 0		3		μΑ
dl _B	Average Drift	0-7-1		7		nA/°C
I _{OS}	Input Offset Current	0000		0.1		μΑ
PSRR	Power Supply Rejection Ratio	DC DX	52	57		dB
A _{OL}	Open Loop Gain	10. 9. 0.		75		dB
Is	Supply Current	0 12 16		3.9		mA
	tracteristics (CLC1015)	(P) (.0	0.0		
T _{ON}	Turn On Time	0,45	7	150		ns
T _{OFF}	Turn Off Time	0,0,0	13	25		ns
OFFISO	Off Isolation	5MHz, $R_L = 100\Omega$		75		dB
I _{SD}	Disable Supply Current	DIS tied to GND	6	58	100	μA
Input Charac			0			P
R _{IN}	Input Resistance			4.3		ΜΩ
C _{IN}	Input Capacitance			1.8		pF
CMIR	Common Mode Input Range			-0.3 to 1.5		V
CMRR	Common Mode Rejection Ratio	DC, V _{CM} = 0 to V _S - 1.5V		87		dB
Output Characteristics						
- Cutput Onai				0.023 to		.,
		$R_L = 10k\Omega$ to $V_S/2$		2.66		V
V_{OUT}	Output Swing	$R_L = 2k\Omega$ to $V_S/2$		0.025 to 2.653		V
		D 4500 to V / 0		0.065 to		.,
		$R_L = 150\Omega$ to $V_S/2$		2.55		V
I _{OUT}	Output Current			±55		mA
	·	-40°C to +85°C		±50		mA
I _{SC}	Short Circuit Current	$V_{OUT} = V_S / 2$		±85		mA
V_S	Power Supply Operating Range		2.5	2.7	5.5	V

3 / 19

Notes

^{1.} $R_f=1k\Omega$ was used for optimal performance. (For $G=+1,\,R_f=0)$

Electrical Characteristics at +5V

 T_A = 25°C, V_S = +5V, R_f = 2k Ω , R_L = 2k Ω to $V_S/2;$ G = 2; unless otherwise noted.

tsSettling Time to 0.1% $V_{OUT} = 2V$ step 40 nsOSOvershoot $V_{OUT} = 0.2V$ step 7 $\%$ SRSlew Rate $G = -1$, $5V$ step 145 $V/\mu s$ Distortion/Noise ResponseHD22nd Harmonic Distortion $^{(1)}$ $5MHz$, $V_{OUT} = 2V_{pp}$ 71 dBc HD33rd Harmonic Distortion $^{(1)}$ $5MHz$, $V_{OUT} = 2V_{pp}$ 78 dBc THDTotal Harmonic Distortion $^{(1)}$ $5MHz$, $V_{OUT} = 2V_{pp}$ 70 dB DGDifferential Gain $NTSC$ (3.85MHz), AC-Coupled, $R_L = 150\Omega$ 0.06 $\%$ DPDifferential Phase $NTSC$ (3.85MHz), DC-Coupled, $R_L = 150\Omega$ 0.08 $\%$ R_L	Symbol	Parameter	Conditions	Min	Тур	Max	Units
UGBW Unity Gain Bandwidth (Γ) G = +1, V _{OUT} = 0.05V _{pp} 260 MHz BWss (SWLs) -3dB Bandwidth (G = +2, V _{OUT} = 0.2V _{pp} 90 MHz BWss (SWLs) Large Signal Bandwidth (G = +2, V _{OUT} = 2V _{pp} 40 MHz Time Domain Wouth (G = +2, V _{OUT} = 2V) 10 MHz Is, Is (Setting Time to 0.1% (G = +2, V _{OUT} = 2V) step 3.6 ns OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % SR (S = +2, V _{OUT} = 2V) step 7 % OS (Overshoot (G = +2, V _{OUT} = 2V) step 7 % BR (S = +2, V _{OUT} = 2V) step 7 7 % SR (S = +2, V _{OUT} = 2V) step 7 7 % SR (S = +2, V _{OUT} = 2V) step 7 7 4 Bc BD (D = +2, V _{OUT} = 2V) step 7 7 4	Frequency [Domain Response					
BWs -3dB Bandwidth G = +2, Vour = 0.2V pp 90	GBWP	-3dB Gain Bandwidth Product			90		MHz
BWLs Large Signal Bandwidth G = +2, V _{OUT} = 2V _{pp} 40 MHz Time Domain Time Domain Time Time In Its	UGBW	Unity Gain Bandwidth(1)	$G = +1, V_{OUT} = 0.05V_{pp}$		260		MHz
Time Domain	BW _{SS}	-3dB Bandwidth	G = +2, V _{OUT} = 0.2V _{pp}		90		MHz
Fig. Rise and Fall Time	BW _{LS}	Large Signal Bandwidth	$G = +2$, $V_{OUT} = 2V_{pp}$		40		MHz
Settling Time to 0.1% V_OUT = 2V step 40 ns	Time Doma	in					
OS Overshoot V _{OLT} = 0.2V step 7 % SR Slew Rate G = -1, 5V step 145 V/μs Distortion/Noise Response UVI/μs UVI/μs UVI/μs HD2 2nd Harmonic Distortion (1) SMHz, V _{OUT} = 2V _{pp} 71 dBc HD3 3rd Harmonic Distortion (1) 5MHz, V _{OUT} = 2V _{pp} 70 dBc HD4 Total Harmonic Distortion (1) 5MHz, V _{OUT} = 2V _{pp} 70 dBc THD Total Harmonic Distortion (1) 5MHz, V _{OUT} = 2V _{pp} 70 dB DG Differential Gain NTSC (3.85MHz), AC-Coupled, RL = 1500 0.06 % NTSC (3.85MHz), DC-Coupled, RL = 1500 0.06 % % en Input Voltage Noise 1-14Hz 16 nVI/JHz in Input Current Noise 11MHz 1.3 pA/Hz XTALK Crosstalk(1) CLC2005, 10MHz 62 dB DC Performance VI 10 pA/Hz pA/Hz V _{ID} Input Offset Voltage -8	t _R , t _F	Rise and Fall Time (1)	V _{OUT} = 0.2V step		3.6		ns
Sign Sign Rate G = -1, 5V step 145 V/μs	t _S	Settling Time to 0.1%	V _{OUT} = 2V step		40		ns
Distortion/Noise Response HD2	OS	Overshoot	V _{OUT} = 0.2V step		7		%
HD2	SR	Slew Rate	G = -1, 5V step		145		V/µs
HD3	Distortion/N	oise Response		'			•
HD3	HD2	2nd Harmonic Distortion (4)	5MHz, V _{OUT} = 2V _{pp}		71		dBc
Differential Gain NTSC (3.85MHz), AC-Coupled, R _L = 150Ω 0.06 % %	HD3	3rd Harmonic Distortion (1)			78		dBc
Differential Gain NTSC (3.85MHz), AC-Coupled, R _L = 150Ω 0.06 % %	THD	Total Harmonic Distortion (1)			70		dB
DP Differential Phase NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.08 % % NTSQ (3,85MHz), AC-Coupled, R _L = 150Ω 0.07 ° ° NTSQ (3,85MHz), AC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 ° NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 0.06 NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 0.06 NTSQ (3,85MHz), DC-Coupled, R _L = 150Ω 0.06 0.0	50	Diff. 11.10 i	· ·		0.06		%
DP	DG	Differential Gain	NTSC (3.85MHz), DC-Coupled, $R_L = 150\Omega$		0.08		%
en Input Voltage Noise >1MHz 16 nVI/VHz in Input Current Noise >1MHz 13 pA/VHz X _{TALK} Crosstalk** CLE2005, 10MHz 62 dB DC Performance DC Performance F 1.4 8 mV d _{VIO} Input Offset Voltage -8 1.4 8 mV d _{VIO} Average Drift 10 μV/°C Ig Input Bias Current -8 3 8 μA dB Average Drift -8 3 8 μA PSRR Input Offset Current -0.8 0.1 0.8 μA PSRR Power Supply Rejection Ratio DC 52 57 dB A _{OL} Open Loop Gain DC 52 57 dB Ig Supply Current 9 4.2 5.2 mA Disable Characteristics (CLC1015) 150 ns ns T _{OFF} Turn Off Time 150 ns <td></td> <td></td> <td>NTSC (3.85MHz), AC-Coupled, $R_L = 150\Omega$</td> <td></td> <td>0.07</td> <td></td> <td>0</td>			NTSC (3.85MHz), AC-Coupled, $R_L = 150\Omega$		0.07		0
Input Current Noise	DP	Differential Phase	NTSC (3.85MHz), DC-Coupled, $R_L = 150\Omega$		0.06		0
XTALK Crosstalk(1) CLC2005, 10MHz 62 dB	e _n	Input Voltage Noise	>1MHz		16		nV/√Hz
DC Performation DC Performation DC DC DC DC DC DC DC D	i _n	Input Current Noise	MHz C		1.3		pA/√Hz
Vio Input Offset Voltage -8 1.4 8 mV dyio Average Drift 10 μV°C Ig Input Bias Current -8 3 8 μA dB Average Drift 7 nA°C nA°C Ios Input Offset Current -0.8 0.1 0.8 μA PSRR Power Supply Rejection Ratio DC 52 57 dB A _{OL} Open Loop Gain 68 78 dB dB Is Supply Current 4.2 5.2 mA Disable Characteristics (CLC1015) Ton Turn On Time 150 ns TOFF Turn Off Time 25 ns OFF _{ISO} Off Isolation 5MHz, R _L = 100Ω 75 dB I _{SD} Disable Supply Current DIS tied to GND 127 170 μA Input Characteristics 4.3 MΩ Cin Input Capacitance 4.3 MΩ Common Mode Input Range	X _{TALK}	Crosstalk ⁽¹⁾	CLC2005, 10MHz		62		dB
dy10 Average Drift 10 μV/°C I _B Input Bias Current -8 3 8 μA dI _B Average Drift 7 nA/°C nA/°C I _{OS} Input Offset Current -0.8 0.1 0.8 μA PSRR Power Supply Rejection Ratio DC 52 57 dB A _{OL} Open Loop Gain 66 78 dB dB I _S Supply Current 4.2 5.2 mA Disable Charcteristics (CLC1015) 4.2 5.2 mA TON Turn On Time 150 ns ns OFF _{ISO} Off Isolation 5MHz, R _L = 100Ω 75 dB I _{SD} Disable Supply Current DIS tied to GND 127 170 μA Input Charctristics RIN Input Resistance 4.3 MΩ MΩ CiN Input Capacitance 1.8 -0.3 to 3.8 V	DC Perform	ance	00 1/2				
IB Input Bias Current -8 3 8 μA dIB Average Drift 7 nA/°C I_{OS} Input Offset Current -0.8 0.1 0.8 μA PSRR Power Supply Rejection Ratio DC 52 57 dB A_{OL} Open Loop Gain 68 78 dB I_S Supply Current 4.2 5.2 mA Disable Characteristics (CLC1015) **** ***** **** **** **** **** **** **** **** **** **** **** **** **** **** ***	V _{IO}	Input Offset Voltage	0. 0. 0.	-8	1.4	8	mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d _{VIO}	Average Drift	Col 12 17:		10		μV/°C
I_{OS} Input Offset Current -0.8 0.1 0.8 μA PSRR Power Supply Rejection Ratio DC 52 57 dB A_{OL} Open Loop Gain 68 78 dB I_S Supply Current 4.2 5.2 mA Disable Characteristics (CLC1015) Turn On Time 150 ns T_{OFF} Turn Off Time 25 ns OFFI _{ISO} Off Isolation 5MHz, $R_L = 100\Omega$ 75 dB I_{SD} Disable Supply Current \overline{DIS} tied to GND 127 170 μ A Input Characteristics R_{IN} Input Resistance 4.3 $M\Omega$ C_{IN} Input Capacitance 1.8 ρ F CMIR Common Mode Input Range C_{IN}	I _B	Input Bias Current	10, U, O,	-8	3	8	μΑ
PSRR Power Supply Rejection Ratio DC 52 57 dB A _{OL} Open Loop Gain 68 78 dB I _S Supply Current 4.2 5.2 mA Disable Characteristics (CLC1015) TON Turn On Time 150 ns TOFF Turn Off Time 25 ns OFF _{ISO} Off Isolation 5MHz, R _L = 100Ω 75 dB I _{SD} Disable Supply Current DIS tied to GND 127 170 μA Input Characteristics R _{IN} Input Resistance 4.3 MΩ C _{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	dl _B	Average Drift	601 12 100		7		nA/°C
A _{OL} Open Loop Gain6878dB I_S Supply Current4.25.2mADisable Characteristics (CLC1015) T_{ON} Turn On Time150ns T_{OFF} Turn Off Time25nsOFF IsoOff Isolation5MHz, $R_L = 100\Omega$ 75dB I_{SD} Disable Supply Current \overline{DIS} tied to GND127170 μA Input Characteristics R_{IN} Input Resistance4.3 $M\Omega$ C_{IN} Input Capacitance1.8 pF CMIRCommon Mode Input Range -0.3 to 3.8 V	I _{OS}	Input Offset Current	(0,1), 9	-0.8	0.1	0.8	μA
Is Supply Current 4.2 5.2 mA Disable Characteristics (CLC1015) TON Turn On Time 150 ns TOFF Turn Off Time 25 ns OFF _{ISO} Off Isolation 5MHz, R _L = 100Ω 75 dB IsD Disable Supply Current DIS tied to GND 127 170 μA Input Characteristics R _{IN} Input Resistance 4.3 MΩ C _{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	PSRR	Power Supply Rejection Ratio	DC OS	52	57		dB
Disable Characteristics (CLC1015) $T_{ON} \qquad \text{Turn On Time} \qquad \qquad \qquad 150 \qquad \text{ns}$ $T_{OFF} \qquad \text{Turn Off Time} \qquad \qquad \qquad 25 \qquad \text{ns}$ $OFF_{ISO} \qquad \text{Off Isolation} \qquad \qquad 5MHz, R_L = 100\Omega \qquad \qquad 75 \qquad \text{dB}$ $I_{SD} \qquad \text{Disable Supply Current} \qquad \overline{\text{DIS}} \text{ tied to GND} \qquad \qquad 127 \qquad 170 \qquad \mu\text{A}$ $Input Characteristics$ $R_{IN} \qquad Input Resistance \qquad \qquad \qquad 4.3 \qquad M\Omega$ $C_{IN} \qquad Input Capacitance \qquad \qquad \qquad 1.8 \qquad pF$ $CMIR \qquad \text{Common Mode Input Range} \qquad \qquad$	A_{OL}	Open Loop Gain	\$C.	68	78		dB
T_{ON} Turn On Time 150 ns T_{OFF} Turn Off Time 25 ns OFF _{ISO} Off Isolation 5MHz, $R_L = 100\Omega$ 75 dB I_{SD} Disable Supply Current \overline{DIS} tied to GND 127 170 μ A Input Characteristics R_{IN} Input Resistance 4.3 $MΩ$ C_{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	I _S	Supply Current			4.2	5.2	mA
OFF Turn Off Time 25 ns OFF _{ISO} Off Isolation 5MHz, R _L = 100Ω 75 dB I_{SD} Disable Supply Current \overline{DIS} tied to GND 127 170 μ A Input Characteristics R_{IN} Input Resistance 4.3 $MΩ$ C_{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range V	Disable Cha	aracteristics (CLC1015)	•	0			
OFF ISO Off Isolation 5MHz, R _L = 100Ω 75 dB I _{SD} Disable Supply Current \overline{DIS} tied to GND 127 170 μ A Input Characteristics R _{IN} Input Resistance 4.3 $M\Omega$ C _{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	T _{ON}	Turn On Time			150		ns
I _{SD} Disable Supply Current DIS tied to GND 127 170 μA Input Characteristics R _{IN} Input Resistance 4.3 $MΩ$ C _{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	T _{OFF}	Turn Off Time			25		ns
Input Characteristics	OFF _{ISO}	Off Isolation	5MHz, R_L = 100 Ω		75		dB
R _{IN} Input Resistance 4.3 MΩ C _{IN} Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	I _{SD}	Disable Supply Current	DIS tied to GND		127	170	μA
CIN Input Capacitance 1.8 pF CMIR Common Mode Input Range -0.3 to 3.8 V	Input Chara	cteristics					
CMIR Common Mode Input Range -0.3 to 3.8 V	R _{IN}	Input Resistance			4.3		ΜΩ
CMIR Common Mode input Hange 3.8	C _{IN}	Input Capacitance			1.8		pF
CMRR Common Mode Rejection Ratio DC, V _{CM} = 0 to V _S - 1.5V 72 87 dB	CMIR	Common Mode Input Range					V
	CMRR	Common Mode Rejection Ratio	DC, $V_{CM} = 0$ to $V_{S} - 1.5V$	72	87		dB

Electrical Characteristics at +5V Continued

 $T_A = 25^{\circ}C$, $V_S = +5V$, $R_f = 2k\Omega$, $R_L = 2k\Omega$ to $V_S/2$; G = 2; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Output Chai	racteristics					
		$R_L = 10k\Omega$ to $V_S/2$		0.027 to 4.97		V
V _{OUT}	Output Swing	$R_L = 2k\Omega$ to $V_S/2$		0.036 to 4.953		V
		$R_L = 150\Omega$ to $V_S/2$	0.3	0.12 to 4.8	4.625	V
	Output Current			±55		mA
I _{OUT} Output Current	-40°C to +85°C		±50		mA	
I _{SC}	Short Circuit Current	V _{OUT} = V _S / 2		±85		mA
Vs	Power Supply Operating Range		2.5	5	5.5	V

Output Sv.

JUT Output Current

Isc Short Circuit Current

Vs Power Supply Operating Range

Notes:

1. R_I = 1kΩ was used for optimal performance. (For G = Fr. A = 0)

CLC1005 Pin Configurations TSOT-5

CLC1005 Pin Assignments

TSOT-5

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	+V _S	Positive supply

SOIC-8

SOIC-8

>	SUIC-8		
or he	Pin No.	Pin Name	Description
8 NC	1	NC	No Connect
8 NC 7 +V _S 6 OUT	2	-IN	Negative input
7 +V _S	3	+IN	Positive input
ONT OF	4	-V _S	Negative supply
6 OUT	5	NC	No Connect
5 NC	6	OUT	Output
	, 0	+V _S	Positive supply
7	8 4	NC	No Connect
urations	CLC1015 TSOT-6	NC NC Pin Assignm	ients
	Pin No.	Pin Name	Description
6 +V _s	1	OUT	Output
	2	-V _S	Negative supply
5 DIS	3	+IN	Positive input
4 -IN	4	-IN	Negative input
	5	DIS	Disable pin. Enabled if pin is left open or tied to +V _S , disabled if pin is tied to -V _S (which is GND in a single supply application.)
	6	+Ve	Positive supply

CLC1015 Pin Configurations TSOT-6

Pin No.	Pin Name	Description
1	OUT	Output
2	-V _S	Negative supply
3	+IN	Positive input
4	-IN	Negative input
5	DIS	Disable pin. Enabled if pin is left open or tied to $+V_S$, disabled if pin is tied to $+V_S$ (which is GND in a single supply application.)
6	+V _S	Positive supply

CLC2005 Pin Configuration SOIC-8 / MSOP-8

CLC2005 Pin Assignments

SOIC-8 / MSOP-8

Pin No.	Pin Name	Description
1	OUT1	Output, channel 1
2	-IN1	Negative input, channel 1
3	+IN1	Positive input, channel 1
4	-V _S	Negative supply
5	+IN2	Positive input, channel 2
6	-IN2	Negative input, channel 2
7	OUT2	Output, channel 2
8	+V _S	Positive supply

The Droduct (or Droducts) mentioned in this actured

 $T_A = 25^{\circ}C$, $V_S = +5V$, $R_L = 2k\Omega$ to $V_S/2$, G = +2, $R_F = 2k\Omega$; unless otherwise noted.

Non-Inverting Frequency Response $V_S = +5V$

Frequency Response vs CL

Inverting Frequency Response $V_S = +5V$

Inverting Frequency Response $V_S = +2.7V$

Large Signal Frequency Response

 $T_A = 25^{\circ}C$, $V_S = +5V$, $R_L = 2k\Omega$ to $V_S/2$, G = +2, $R_F = 2k\Omega$; unless otherwise noted.

Frequency Response vs. Temperature

2nd & 3rd Harmonic Distortion $V_S = +5V$

2nd Harmonic Distortion vs VO

Input Voltage Noise vs Frequency

2nd & 3rd Harmonic Distortion $V_S = +2.7V$

3rd Harmonic Distortion vs Vo

exar.com/CLC1005

 $T_A = 25$ °C, $V_S = +5V$, $R_L = 2k\Omega$ to $V_S/2$, G = +2, $R_F = 2k\Omega$; unless otherwise noted.

PSRR

CMRR

Open Loop Gain & Phase vs. Frequency

Output Current

Small Signal Pulse Response V_S = +5V

Small Signal Pulse Response Vs = +2.7V

 $T_A = 25$ °C, $V_S = +5V$, $R_L = 2k\Omega$ to $V_S/2$, G = +2, $R_F = 2k\Omega$; unless otherwise noted.

Large Signal Pulse Response V_S = +5V

Output Swing

Channel Matching V_S = +5V

Application Information

General Description

The CLC1005, CLC1015, and CLC2005 are single supply. general purpose, voltage-feedback amplifiers fabricated on a complementary bipolar process using a patented topography. They feature a rail-to-rail output stage and are unity gain stable. Both gain bandwidth and slew rate are insensitive to temperature.

The common mode input range extends to 300mV below ground and to 1.2V below Vs. Exceeding these values will not cause phase reversal. However, if the input voltage exceeds the rails by more than 0.5V, the input ESD devices will begin to conduct. The output will stay at the rail during this overdrive condition.

The design is short circuit protected and offers "soft" saturation protection that improves recovery time.

Figures 1, 2, and 3 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations. Figure 4 shows the typical non-inverting gain circuit for single supply applications.

Figure 1: Typical Non-Inverting Gain Circuit

Figure 2: Typical Inverting Gain Circuit

Figure 3: Unity Gain Circuit

At non-inverting gains other than G = +1, keep R_g below $1k\Omega$ to minimize peaking; thus for optimum response at a gain of +2, a feedback resistor of $1k\Omega$ is recommended. Figure 5 illustrates the CLC1005, CLC1015 and CLC2005 frequency response with both $1k\Omega$ and $2k\Omega$ feedback resistors.

Figure 5: Frequency Response vs. Rf

Overdrive Recovery

For an amplifier, an overdrive condition occurs when the output and/or input ranges are exceeded. The recovery time varies based on whether the input or output is overdriven and by how much the ranges are exceeded. The CLC1005, CLC1015, and CLC2005 will typically recover in less than 20ns from an overdrive condition. Figure 6 shows the CLC2005 in an overdriven condition.

Figure 6: Overdrive Recovery

Enable/Disable Function

The CLC1015 offers an active-low disable pin that can be used to lower its supply current. Leave the pin floating to enable to part. Pull the disable pin to the negative supply (which is ground in a single supply application) to disable the output. During the disable condition, the nominal supply current will drop below 127µA and the output will be at a high impedance with about 2pF capacitance.

Power Dissipation

© 2007-2015 Exar Corporation

Power dissipation should not be a factor when operating under the stated $2k\Omega$ load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta, IA (θ_{JA}) is used along with the total die power dissipation.

$$T_{Junction} = T_{Ambient} + (\theta_{JA} \times P_D)$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine PD, the power dissipated in the load

needs to be subtracted from the total power delivered by the supplies.

Supply power is calculated by the standard power equation.

$$P_{\text{supply}} = V_{\text{supply}} \times I_{\text{RMSsupply}}$$

 $V_{\text{supply}} = V_{\text{S+}} - V_{\text{S-}}$

Power delivered to a purely resistive load is:

$$P_{load} = ((V_{load})_{RMS^2})/Rload_{eff}$$

The effective load resistor (Rloadeff) will need to include the effect of the feedback network. For instance,

Rload_{eff} in Figure 3 would be calculated as:

$$R_L \parallel (R_f + R_g)$$

These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load

Here, P_D can be tours... $P_D = P_{Quiescent} + P_{Dynamic} - P_{load}$ Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{supply} . Load power can be calculated as above with the desired signal amplitudes using:

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$P_{Dynamic} = (V_{S+} - V_{load})_{RMS} \times (I_{load})_{RMS}$$

Assuming the load is referenced in the middle of the power rails or V_{supply}/2.

The CLC1015 is short circuit protected. However, this may not guarantee that the maximum junction temperature (+150°C) is not exceeded under all conditions. Figure 7 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

13 / 19

Figure 7. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, $R_{\rm S}$, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 8.

Figure 8. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in approximately <1dB peaking in the frequency response.

C _L (pF)	R _S (Ω)	-3dB BW (MHz)
22pF	0	118
47pF	15	112
100pF	15	91
492pF	6.5	59

Table 1: Recommended R_S vs. C_L

For a given load capacitance, adjust R_S to optimize the tradeoff between settling time and bandwidth. In general, reducing R_S will increase bandwidth at the expense of additional overshoot and ringing.

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as an aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include 6.8μF and 0.1μF ceramic capacitors for power supply decoupling
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board #	Products
CEB002	CLC1005 and CLC1015 in TSOT
CEB003	CLC1005 in SOIC
CEB006	CLC2005 in SOIC
CEB010	CLC2005 in MSOP

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-18. These evaluation boards are built for dual-supply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -V_S to ground.
- Use C3 and C4, if the -V_S pin of the amplifier is not directly connected to the ground plane.

Figure 10. CEB002 Top View

Figure 11. CEB002 Bottom View

Figure 12. CEB003 Top View

Figure 13. CEB003 Bottom View

Figure 15. CEB006 Top View

Figure 16. CEB006 Bottom View

Figure 17. CEB010 Top View

Figure 18. CEB010 Bottom View

Mechanical Dimensions

TSOT-6 Package

6 PIN TSOT (OPTION 2)						
SYMBOLS	DIMENSION IN MM (Control Unit)			DIMENSION IN INCH (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.75		0.80	0.030	_	0.031
A1	0.00	_	0.05	0.000	_	0.002
A2	0.70	0.75	0.78	0.028	0.036	0.031
b	0.35	_	0.50	0.012	_	0.020
С	0.10		0.20	0.003	_	0.008
D	2.90 BSC			0.114 BSC		
Е	2.80 BSC			0.110 BSC		
E1	1.60 BSC			0.063 BSC		
е	0.95 BSC			0.038 BSC		
e1	1.90 BSC		0.075 BSC			
L	0.37	0.45	0.60	0.012	0.018	0.024
L1	0.60 REF			0	.024 RE	F
L2	0.25 BSC		0.010 BSC		SC .	
R	0.10	_	_	0.004	_	_
R1	0.10	_	0.25	0.004	_	0.010
θ	0,	4*	8*	0,	4°	8*
θ1	4*	10*	12°	4*	10°	12*
N	6				6	

TSOT-5 Package

Front View

4X 0.95mm

5 Pin TSOT (OPTION 2)						
SYMBOLS	DIMENSION IN MM (Control Unit)			DIMENSION IN INCH (Reference Unit)		
7.0	MIN	NOM	MAX	MIN 《	NOM	MAX
A	0.75	_	0.80	0.030	4/	0.031
A1 🥌	0.00	_	0.05	0.000		0.002
A2	0.70	0.75	0.78	0.028	0.030	0.031
b	0.35	_	0.50	0.012	~	0.020
С	0.10	_	0.20	0.003	/_	0.008
D	2.90 BSC			C).114 B	SC
E	2.80 BSC		0.110 BSC			
E1	1.60 BSC		0.063 BSC			
е	0.95 BSC		0.038 BSC			
e1	1	1.90 BSC		0.075 BSC		
L	0.37	0.45	0.60	0.012	0.018	0.024
L1	0.60 REF		0	.024 RE	.F	
L2	0.25 BSC		0	.010 BS	iC .	
R	0.10	—	—	0.004	—	_
R1	0.10	_	0.25	0.004	_	0.010
θ	0,	4*	8*	0,	4.	8*
θ1	4*	10°	12*	4.	10°	12*
N	5				5	

Side View

MSOP-8 Package

SOIC-8 Package

Side View

RECOMMENDED PCB LAND PATTERN

R1 h x 45°	GAUGE PLANE SEATING PLANE (L1) SEATING PLANE

Front	View
-------	------

8 Pin S	COLONI					
	SOICN	JEDE	C MS-	-012 [^]	Variatio	n AA
SYMBOLS	DIMENSIONS IN MM YMBOLS (Control Unit)			DIMENSIONS IN INCH (Reference Unit)		
	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.35		1.75	0.053	_	0.069
A1	0.10		0.25	0.004	_	0.010
A2	1.25	_	1.65	0.049	_	0.065
b	0.31	_	0.51	0.012	_	0.020
С	0.17	_	0.25	0.007	_	0.010
E	6.00 BSC 0.236 BSC			С		
E1	3.90 BSC 0.154			.154 BS	С	
е	1.27 BSC		0.050 BSC			
h	0.25	_	0.50	0.010	_	0.020
L	0.40	_	1.27	0.016	_	0.050
L1	1.04 REF 0.041 REF			-		
L2	(0.25 BSC)	0.	.010 BS0	
R	0.07	_	_	0.003	_	_
R1	0.07	_	_	0.003	_	_
θ	0,	_	8*	0,	_	8*
θ1	5°		15°	5°	_	15°
θ2	0,	_	_	0°	_	_
D	4.90 BSC			0.193 BSC		
N	8				8	

Ordering Information

CLC1005 Ordering Informa			Operating Temperature Range	Packaging
	tion			
CLC1005IST5X	TSOT-5	Yes	-40°C to +85°C	Tape & Reel
CLC1005IST5MTR	TSOT-5	Yes	-40°C to +85°C	Mini Tape & Reel
CLC1005IST5EVB	Evaluation Board	N/A	N/A	N/A
CLC1005ISO8X	SOIC-8	Yes	-40°C to +85°C	Tape & Reel
CLC1005ISO8MTR	SOIC-8	Yes	-40°C to +85°C	Mini Tape & Reel
CLC1005ISO8EVB	Evaluation Board	N/A	N/A	N/A
CLC1015 Ordering Informat	tion	·		
CLC1015IST6X	TSOT-6	Yes	-40°C to +85°C	Tape & Reel
CLC1015IST6MTR	TSOT-6	Yes	-40°C to +85°C	Mini Tape & Reel
CLC1015IST6EVB	Evaluation Board	N/A	N/A	N/A
CLC2005 Ordering Informa	tion			
CLC2005ISO8X	SOIC-8	Yes	-40°C to +85°C	Tape & Reel
CLC2005ISO8MTR	SOIC-8	Yes	-40°C to +85°C	Mini Tape & Reel
CLC2005ISO8EVB	Evaluation Board	N/A	N/A	N/A
CLC2005IMP8X	MSOP-8	Yes	-40°C to +85°C	Tape & Reel
CLC2005IMP8MTR	MSOP-8	Yes	-40°C to +85°C	Mini Tape & Reel
CLC2005IMP8EVB	Evaluation Board	N/A	N/A	N/A
pisture sensitivity level for all pa	rts is MSL-1. Mini tape and reel quan	tity is 250.	beinent:	

Revision	Date	Description
2D (ECN 1513-01)	March 2015	Reformat into Exar data sheet template. Updated ordering information table to include MTR and EVB part numbers. Updated thermal resistance numbers and package outline drawings. Added CLC1015 back into data sheet.

For Further Assistance:

Email: CustomerSupport@exar.com or HPATechSupport@exar.com

Exar Technical Documentation: http://www.exar.com/techdoc/

Exar Corporation Headquarters and Sales Offices Tel.: +1 (510) 668-7000 48760 Kato Road Fremont, CA 94538 - USA Fax: +1 (510) 668-7001

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

