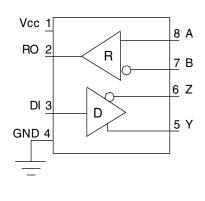


SP1490E/SP1491E

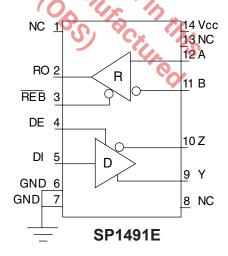
Full Duplex RS-485 Transceivers

FEATURES

- +5V Only
- Low Power BiCMOS
- Driver/Receiver Enable (SP1491E)
- RS-485 and RS-422 Drivers/Receivers
- Pin Compatible with SN75179 (SP1490E)
- Pin Compatible with SN75180 (SP1491E)
- Improved ESD Specifications ±15kV Human Body Model
 ±15kV IEC61000-4-2 Air Discharge


APPLICATIONS

- Industial Networks Telecom
- Motor Control
- HVAC/ Building Control


DESCRIPTION

The SP1490E is a low power differential line driver/receiver meeting RS-485 and RS-422 standards up to 20Mbps. The SP1491E is identical to the SP1490E with the addition of driver and receiver tristate enable lines. Both products feature ±200mV receiver input sensitivity, over wide common mode range. The SP1490E is available in an 8-pin NSOIC packages for operation over the commercial and industrial temperature ranges. The SP1491E is available in a 14-pin NSOIC packages for operation over the commercial and industrial temperature ranges.

BLOCK DIAGRAM

SP1490E

ABSOLUTE MAXIMUM RATINGSThese are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V	+7V
V _{cc} Input Voltages	
Drivers	0.5V to (V _{CC} +0.5V)
Receivers	±14V
Output Voltages	
	±14V
Receivers	0.5V to (V _{cc} +0.5V)
Storage Temperature	65°C to +150°
Power Dissipation	1000mW

ELECTRICAL CHARACTERISTICS

 T_{MN} to T_{MN} and $V_{\text{cc}} = 5V \pm 5\%$ unless otherwise noted.

PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP1490E/1491E DRIVER					
DC Characteristics	Ò				
Differential Output Voltage	3.5		V _{cc}	Volts	Unloaded; R = ∞ ; see figure 1
Differential Output Voltage	2		V _{cc}	Volts	With Load; $R = 50\Omega$; (RS422);
	_ 'C	×			see figure 1
Differential Output Voltage	1.5		V _{cc}	Volts	With Load; $R = 27\Omega$; (RS485); see
figure 1	Q'A	OA			
Change in Magnitude of Driver	0				
Differential Output Voltage for Complimentary States		ク ヘ	0.2	Volts	$R = 27\Omega$ or $R = 50\Omega$; see figure 1
Driver Common-Mode	3 .	0.	0.2	VOILS	R = 2712 of R = 5012, see figure 1
Output Voltage	7/		3	Volts	R = 27Ω or R = 50Ω ; see figure 1
Input High Voltage	20	9		Volts	Applies to D
Input Low Voltage	2.0	O	0.8	Volts	Applies to D
Input Current		67	±10	μA	Applies to D
Driver Short-Circuit Current		0			
V _{OUT} = HIGH		C	±250	mA	-7V ≤ V _o ≤ +12V
V _{OUT} = LOW			±250	mA	-7V ≤ V _o ≤ +12V
			90	10	100
SP1490E/1491E DRIVER					4 %
AC Characteristics Maximum Data Rate	20		(Mbps	25 10
Driver Input to Output	20	30	40	ns	$t_{R/E}$; $R_{D/E} = 54\Omega$, $C_{14} = C_{12} = 100 \text{pF}$;
Driver input to Output		30	40	113	$t_{R/F}$, $R_{D/FF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$; see figures 3 and 6
Driver Input to Output		30	40	ns	$t_{R/F}$: $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100pF$;
					see figures 3 and 6
Driver Skew			5	ns	see figures 3 and 6,
					$t_{R/F} = t_{PLH} - t_{PHL} $
Driver Rise or Fall Time		8	20	ns	From 10% to 90%, $R_{\text{DIFF}} = 54\Omega$,
SP1491E only					$C_{11} = C_{12} = 100 \text{pF}$; see figures 3 and 6
•					
Driver Enable to Output High		20	70	ns	$t_{R/F}$ $C_{L_1} = C_{L_2} = 100 \text{pF}$; see figures 4 and 7: S. closed
Driver Enable to Output Low		40	70	ns	$C_{L_1} = C_{L_2} = 100 \text{pF}$; see figures 4 and 7; S_1 closed
Driver Disable Time from Low		40	70		4 and 7; S ₁ closed
Driver disable Time from Low		40	70	ns	$C_{L1} = C_{L2} = 100 \text{pF}$; see figures
Driver Disable Time from High		40	70	ns	4 and 7; S ₁ closed C = C = 100pF; see figures
2 Diodole Time nom riigh		10	'`		$C_{L1} = C_{L2} = 100 \text{pF}$; see figures 4 and 7; S_2 closed

SP1490E/1491E RECEIVER					
DC Characteristics					
Differential Input Threshold	0.2		+0.2	Volts	-7V ≤ V _{CM} ≤ 12V
Input Hysteresis		70		mV	$V_{CM} = 0V$
Output Voltage High	3.5			Volts	$I_0 = -4mA, V_{1D} = +200mV$
Output Voltage Low			0.4	Volts	$I_0^{\circ} = +4 \text{mA}, \ V_{1D}^{\circ} = -200 \text{mV}$
Input Resistance	12	15		kΩ	-7V ≤ V _{CM} ≤ 12V (1 unit load)
Input Current (A, B); V _{IN} = 12V			±1.0	mA	$V_{\text{IN}} = 12 \text{ V}$ $V_{\text{IN}} = -7 \text{ V}$
Input Current (A, B); $V_{IN} = -7V$			-0.8	mA	$V_{IN} = -7V$
Short-Circuit Current			85	mA	$0^{ N } \le V_O \le V_{CC}$
PARAMETERS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SP1490E/1491E RECEIVER					
AC Characteristics					
Maximum Data Rate	20			Mbps	
Receiver Input to Output	20	45	50	ns	t · R = 540
receiver input to output	20	70	30	113	t_{PLH} ; $R_{DIFF} = 54\Omega$, $C_{11} = C_{12} = 100pF$; Figures 3 & 8
Receiver Input to Output	90	45	50	ns	t : R = 540
receiver input to output	70	10		110	$t_{PHL}^{L1}; R_{DIFF}^{L2} = 54\Omega,$ $C_{L1}^{C} = C_{L2}^{C} = 100pF; Figures 3 & 8$
Diff. Receiver Skew It _{PLH} -t _{PHL}		× 5	10	ns	$R_{DIFF} = 54\Omega; C_{11} = C_{12} = 100pF;$
Receiver Tplh/Tphl	•	40	70	ns	TODIFF OTTE, OLI OLE TOOPT,
Treserver Tpillin TpTill	0	10.	10	110	
POWER REQUIREMENTS	0				
Supply Voltage	+4.75	5 10	+5.25	Volts	
Supply Current	14.75	900	0.23	μΑ	
	7	000	9,	μΛ	
ENVIRONMENTAL AND		TO_A	. 4,		
MECHANICAL	1	b 7	h '	X	
Operating Temperature		で	YO	עיטי.	
Commercial (_C_)	0	0	+70	°C/	
Industrial (_E_)	-40	0	+85	°C	
Storage Temperature	-65		+150	C.	C _A
			100	1	*/*.
			40	.0	Trio.
				9	A %

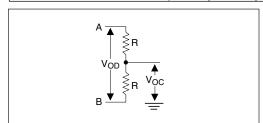


Figure 1. Driver DC Test Load Circuit

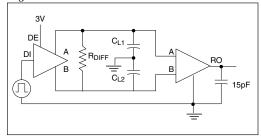


Figure 3. Driver/Receiver Timing Test Circuit

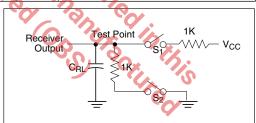


Figure 2. Receiver Timing Test Load Circuit

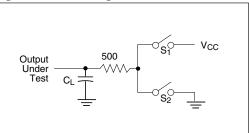


Figure 4. Driver Timing Test Load #2 Circuit



Figure 6. Driver Propagation Delays

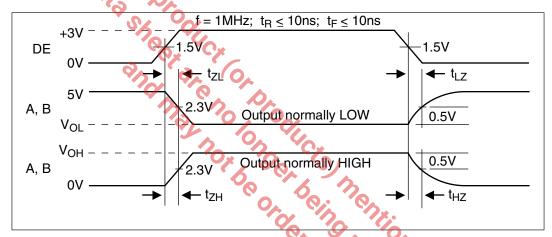


Figure 7. Driver Enable and Disable Times SP1491E only

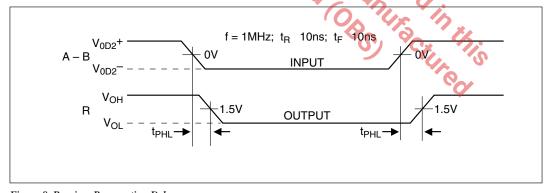


Figure 8. Receiver Propagation Delays

The SP1490E and SP1491E are full-duplex differential transceivers that meet the requirements of RS-485 and RS-422. Fabricated with a Exar proprietary BiCMOS process, both products require a fraction of the power of older bipolar designs.

The RS-485 standard is ideal for multi-drop applications or for long-distance interfaces. RS-485 allows up to 32 drivers and 32 receivers to be connected to a data bus, making it an ideal choice for multi-drop applications. Since the cabling can be as long as 4,000 feet, RS-485 transceivers are equipped with a wide (-7V to +12V) common mode range to accommodate ground potential differences. Because RS-485 is a differential interface, data is virtually immune to noise in the transmission line.

Driver...

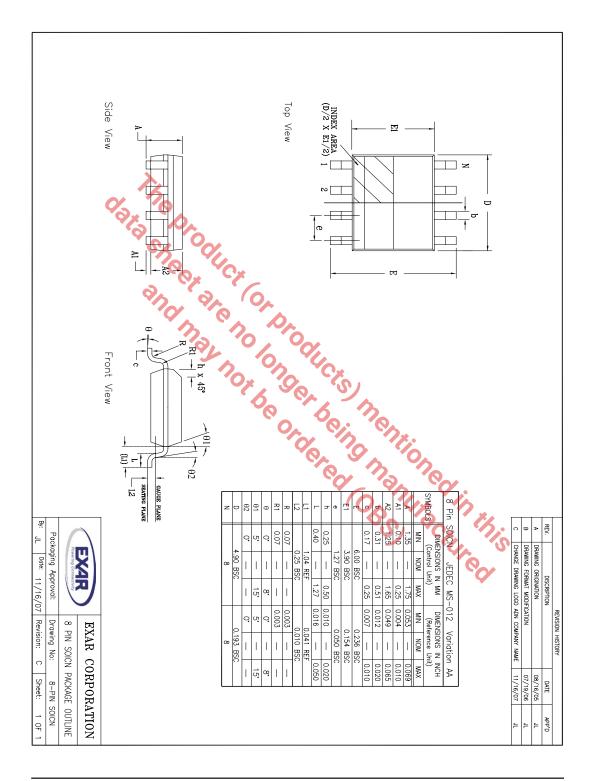
The drivers for both the SP1490E and SP1491E have differential outputs. The typical voltage output swing with no load will be 0 volts to +5 volts. With worst case loading of 54Ω across the differential outputs, the driver can maintain greater than 1.5V voltage levels.

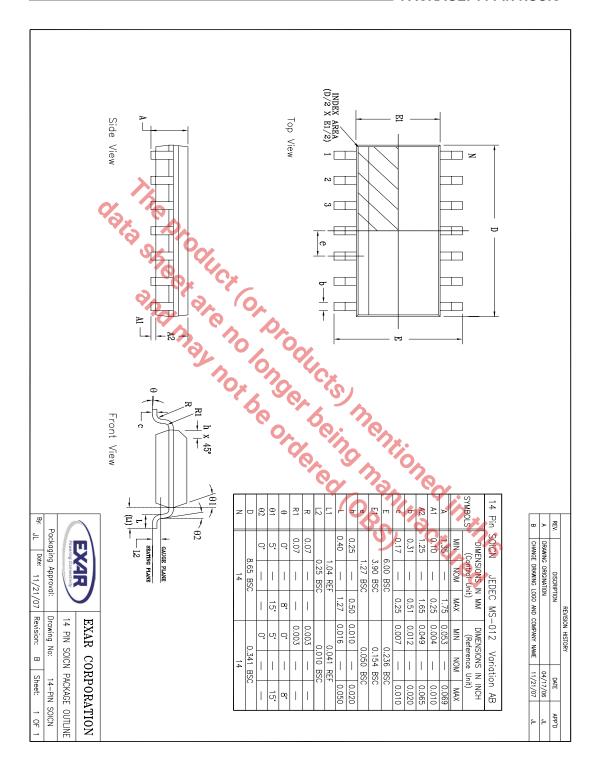
The driver of the SP1491E has a driver enable control line which is active high. A logic high on DE (pin 4) of the SP1491E will enable the differential driver outputs.

INPUTS	OUTPUTS		
DE SP1491E only	DI	Y	Z
1	1	1	0
1	0	0	1
0	X	Z	Z

Transmit Function Truth Table

A logic low on DE (pin 4) of the SP1491E will tri-state the driver outputs. The SP1490E does not have a driver enable.


Receiver...


The receivers for both the SP1490E and SP1491E have differential inputs with an input sensitivity as low as ± 200 mV. Input impedance of the receivers is typically $15 \mathrm{K}\Omega$ ($12 \mathrm{K}\Omega$ minimum). A wide common mode range of -7V to +12V allows for large ground potential differences between systems. The receivers for both the SP1490E and SP1491E are equipped with the fail-safe feature. Fail-safe guarantees that the receiver output will be in a high state when the input is left unconnected and floating.

The receiver of the SP1491E has a receiver enable control line which is active low. A logic low on REB (pin 3) of the SP1491E will enable the differential receiver. A logic high on REB (pin 3) of the SP1491E will tri-state the receiver.

^{†3} O	ceiver.	1491E WIII	iii-state life ie-
SS C			
in	0.		
O _O			
le	イーク		
gh	10. O.		
ole	INPUTS		OUTPUTS
6	. 9. 6		
	RE SP1491E only	A-B	R
	0	+0.2V	1
	0	-0.2V	0
	0	open	1
	1	X	Z

Recieve Function Truth Table

ORDERING INFORMATION

Part Number	TopMark	Temperature Range	Package
SP1490ECN-L	1490ECNYYWW	0°C to +70°C	8-Pin NSOIC
SP1490ECN-L/TR	1490ECNYYWW	0°C to +70°C	8-Pin NSOIC
SP1490EEN-L	SP1490EENYYWW	40°C to +85°C	8-Pin NSOIC
SP1490EEN-L/TR	SP1490EENYYWW	40°C to +85°C	8-Pin NSOIC
SP1491ECN-L	SP1491ECNYYWW	0°C to +70°C	14-Pin NSOIC
SP1491ECN-L/TR	SP1491ECNYYWW	0°C to +70°C	14-Pin NSOIC
SP1491EEN-L	SP1491EENYYWW	40°C to +85°C	14-Pin NSOIC
SP1491EEN-L/TR	SP1491EENYYWW	40°C to +85°C	14-Pin NSOIC

/TR = Tape and Reel

Pack quantity is 2500 for Narrow SOIC.

DATE	REVISION	DESCRIPTION		
03/08/07	J Co	Legacy Sipex Datasheet		
06/12/09	1.0.0	Convert to Exar format, update ordering information and change revision to 1.0.0		
05/24/13	1.0.1	Correct type error per PCN 13-0503-01 ECN: 1322-02 05/24/13		
hor be ordered manus in				
Notice EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reli-				
ability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.				
EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been				

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writting, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2013 EXAR Corporation

Datasheet May 2013

Send your serial transceiver technical inquiry with technical details to: serialtechsupport@exar.com

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.