XR46701

Current Controller with Dimming Function

General Description

The XR46701 is a current controller which integrates a PWM dimming function which can be controlled by a 1V to 4V control signal. Current is regulated through an external N-channel power MOSFET which allows one to scale current and spread heat dissipation.

The XR46701 is generally configured to be the last step in an LED AC direct step drive solution which provides excellent Power Factor and THD without the need for bulk capacitance or inductors. The DC dimming control signal applied to the DIM pin is converted to a Pulse Width Modulation signal to adjust the LED brightness.

The XR46701 also includes thermal foldback and power line regulation to avoid excessive power loss and over heating which can significantly reduce the life of LEDs. The Over Voltage Protection (OVP) and Over Temperature Protection (OTP) provide a fails afe in the worst operating o enable ... may no longer by he or a ein conditions. The OVP can also be used to enable unique dual range AC direct drive solutions.

Typical Application

FEATURES

- 4V to 40V supply voltage range
- Power line regulation
- 1V to 4V DC to PWM dimming control range
- 400 to 2000 Hz adjustable internal PWM oscillator
- V_{IN} supply clamp eliminates external zener
- Dual Mode over temperature protection Thermal current foldback Thermal shutdown
- Over voltage protection enables dual range lighting solutions
- >600V Native Surge protection extends MOV life
- 5V 1mA output

APPLICATIONS

- AC direct drive LED lighting
- High bay lighting
- Dual range light engines
- **Downlights**
- Smart lighting

Ordering Information - Back Page

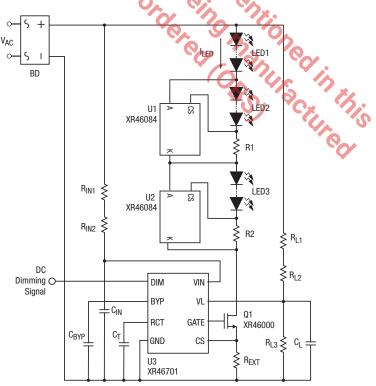


Figure 1: Typical Application

Absolute Maximum Ratings

Stresses beyond the limits listed below may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition may affect device reliability and lifetime.

Sustaining voltage

V _{IN} pin0.3V to 45V
Other pins0.3V to 7V
Storage temperature range55°C to 150°C
Lead temperature (soldering, 10 seconds) 260°C
NOTES:

1. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

- re p. se at the specified to 2. All parameters having Min/Max specifications are guaranteed. Typical values are for reference purpose only.
- 3. Unless otherwise noted, all tests are pulsed tests at the specified temperature, therefore: $T_J = T_C = T_A$.

Operating Conditions

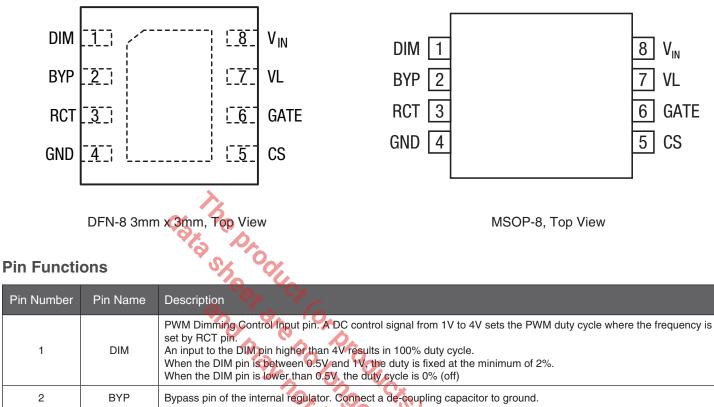
Input voltage, $V_{\text{IN}}4\text{V}$ to 42V
DC dimming signal, $V_{\text{DIM}}0V$ to $5V$
VL line regulation control signal, $V_{\text{VL}}0\text{V}$ to 5V
Internal PWM dimming frequency, $\mathrm{f}_{\mathrm{RCT}}$ 1200Hz, typical
Operating junction temperature, T_J 40°C to125°C
Maximum operating junction temperature, T_{J} 150°C

Electrical Characteristics

Specifications are for Operating Junction Temperature of $T_J = 25^{\circ}C$ only; limits applying over the full Operating Junction Temperature range are denoted by a "•". Typical values represent the most likely parametric norm at $T_J = 25^{\circ}C$, and are provided for reference purposes only. Unless otherwise noted, values are at $T_A = 25^{\circ}C$.

Symbol	Parameter		Conditions		Min	Тур	Max	Units
I _{IN}	V _{IN} supply current		V_{IN} = 5.5V to 36V, DIM = 0V and 5V		0.3	0.6	1.0	mA
V _{IN,CLAMP}	V _{IN} over voltage clamp		When V_{IN} > $V_{IN,CLAMP}$, I_{IN} will increase to >1mA to clamp V_{IN} at $V_{IN,CLAMP}$.		36	40	42	V
V _{BYP}	BYP voltage		$6V \le V_{IN} \le 40V$, $I_{BYP} = 0$ to $2mA$		4.6	5.1	5.6	V
I _{BYP}	BYP pin output cu	rrent			1			mA
M					0.264	0.270	0.276	V
V _{CS}	CS pin voltage	20	V _{IN} = 15V, V _{VL} = 2.7V		0.260		0.285	
	CS voltage line reg	gulation	151/1/1 = 0.71/10.0.01/1		-18	-20	-22	%
ΔV_{LR}	vs. V _{IN} ⁽¹⁾	SA	V _{IN} = 15V, V _{VL} = 2.7V to 3.3V		-0.08	-0.09	-0.10	mV/mV
V _{L,OVP}	VL over voltage pr	otection	V _{VL} increasing			3.40		V
V _{L,OVPR}	VL over voltage protection recovery to normal ⁽²⁾		V _{VL} falling		2.95	3.06	3.15	V
V _{CS,OVP}	VL over voltage protection mode V _{CS}		$V_{VL} > V_{L,OVP}$ $V_{VL} = 2.0V$ $V_{GATE} - V_{CS} = 3V$ $V_{GATE} - V_{CS} = 3V$			0		%
V _{L,UVP}	VL under voltage protection		h oh to			2.2		V
V _{CS,UVP}	VL Under voltage protection mode V _{CS}		V _{VL} = 2.0V			112		%
VCS,UVP			VVL-2.0V			302		mV
ISOURCE	GATE source current		V _{GATE} - V _{CS} = 3V	7%.		5		mA
I _{SINK}	GATE sink current		V _{GATE} - V _{CS} = 3V	0	2	5		mA
IDOWN	Internal pull-high current		DIM pins	2	°.	1		uA
V _{IH}		"H" level	PWM duty = 100%	4	4	K	V _{BYP}	
V _{IL}	DIM pin DC dimming voltage	"L" level	PWM duty = 2% (minimum duty)	9	0.5	7.5	1	v
V _{OFF}	level	0"	PWM duty = 0% (shutdown).		0 0	×	0.5	
V _{HYS}	Off		Hysteresis			44		mV
D _{MIN}	PWM dimming minimum duty		V _{DIM} = 0.5 to 1V, f _{RCT} = 1kHz			2		%
f _{RCT}	Internal PWM dimming frequency		RCT pin, C _{RCT} = 2.2nF			1.0		kHz
İCHARGE	RCT charge currer	nt	Source by RCT pin			300		uA
IDISCHARGE	ARGE RCT discharge current		Sink by RCT pin			8		uA

Electrical Characteristics


Specifications are for Operating Junction Temperature of T_J = 25°C only; limits applying over the full Operating Junction Temperature range are denoted by a "•". Typical values represent the most likely parametric norm at T_J = 25°C, and are provided for reference purposes only. Unless otherwise noted, values are at $T_A = 25$ °C.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
T _{TP1}	Primary thermal protection trip temperature ^{(3),(4)}	When T_J is higher than T_{TP1} , V_{CS} decreases linearly at the slope of -1%/°C.		120	135		°C
T _{TP2}	Secondary thermal protection trip temperature ^{(3),(5)}				150		°C
V _{CS,TP2} /V _{CS}	Secondary thermal protection mode V _{CS} voltage	$T_{J} > T_{TP2}$			20		%
T _{SD,HYS}	Secondary thermal protection hysteresis ⁽³⁾				40		°C
$\% = \frac{V_{CS}}{V_{CS}(V_{VL} = V_{CS})}$ Guarantee by d When T _J > T _{TP1} When T _J > T _{TP2}	2.7V) esign, not by production test. I, the V _{CS} voltage decreases linearly at t e, the V _{CS} voltage drops to 20%.	(T _{TP2} - T _{TP1} = 25°C) T _J > T _{TP2}	nrion anur S	ed in Scrupe			

$$\Delta V_{LR} = \frac{\Delta V_{CS}}{\Delta V_{VI}} = \frac{V_{CS} (V_{VL} = 3.3V) - V_{CS} (V_V)}{3.3V - 2.7V}$$

$$\% = \frac{V_{CS} (V_{VL} = 2.0V)}{V_{CS} (V_{VL} = 2.0V)}$$

Pin Configuration

3	RCT	PWM dimming frequency set pin. Connecting a 2.2nF capacitor between the RCT pin and GND will result in approximately 1.2kHz operation.
4	GND	Ground pin.
5	CS	Current Sense pin. Connect a sense resistor, REXT, between this pin and the GND pin. The current is set by: $I_{OUT} = \frac{V_{CS}}{R_{EXT}}$
6	GATE	External MOSFET gate drive pin.
7	VL	VAC power line regulation compensation control pin. The VL voltage level is used to control the VCS voltage to provide power line regulation compensation and trigger the over voltage presenting directly

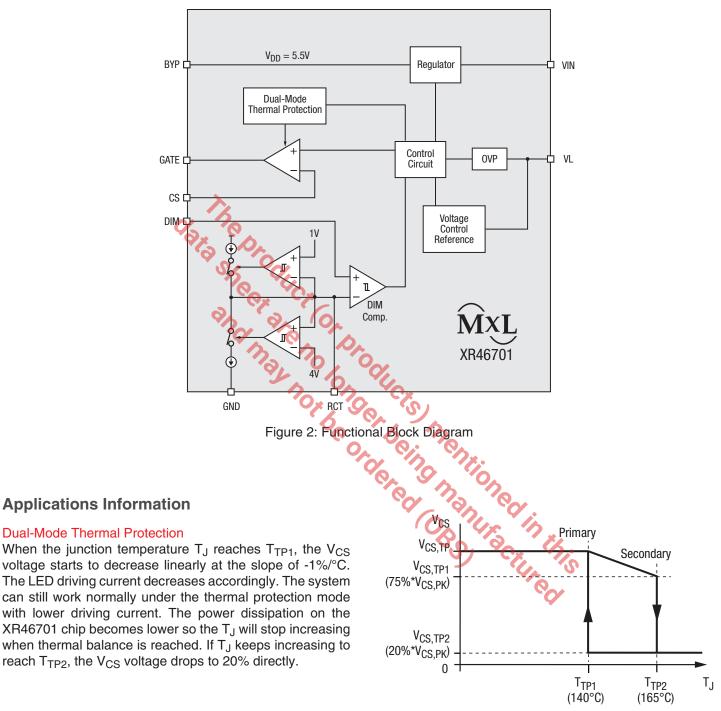
Power supply pin. This pin is clamped with an internal 40V clamp.

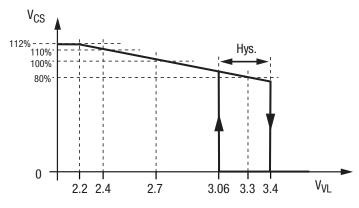
provide power line regulation compensation and trigger the over voltage protection circuit.

8

VIN

Functional Block Diagram




Figure 3: Dual-Mode Thermal Protection

Applications Information (Continued)

Line Regulation Compensation & Over Voltage Protection When there is variation in V_{AC} source, the power of the lamp will also change if the LED driving current is kept unchanged. In order to provide good line regulation when V_{AC} varies in ±20% range, the average of the rectified V_{AC} is sensed by the VL pin to provide compensation in order to keep the power of the lamp in the same level.

The LED driving current is adjusted as the voltage level V_{VL} at the VL pin changes. Based on the design, the LED driving current will be lower when V_{AC} is higher than the nominal value, while the LED driving current will be higher when V_{AC} is lower than the nominal value. The system power can then be maintained at almost the same level.

The typical V_{CS} voltage is defined at V_{VL}=2.7V (100%). When V_{VL} reaches 3.4V, the Over Voltage Protection (OVP) function will be enabled so that the V_{CS} voltage will drop to zero.

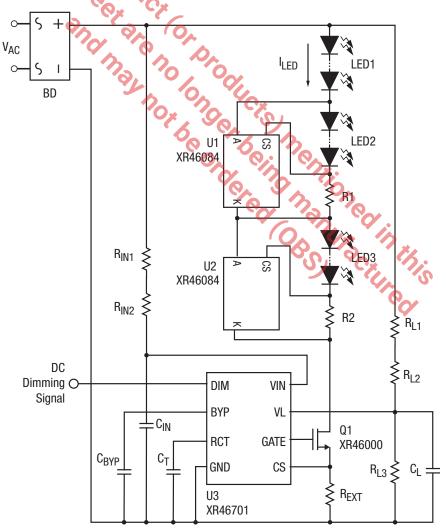


Figure 5: DC to PWM Dimming

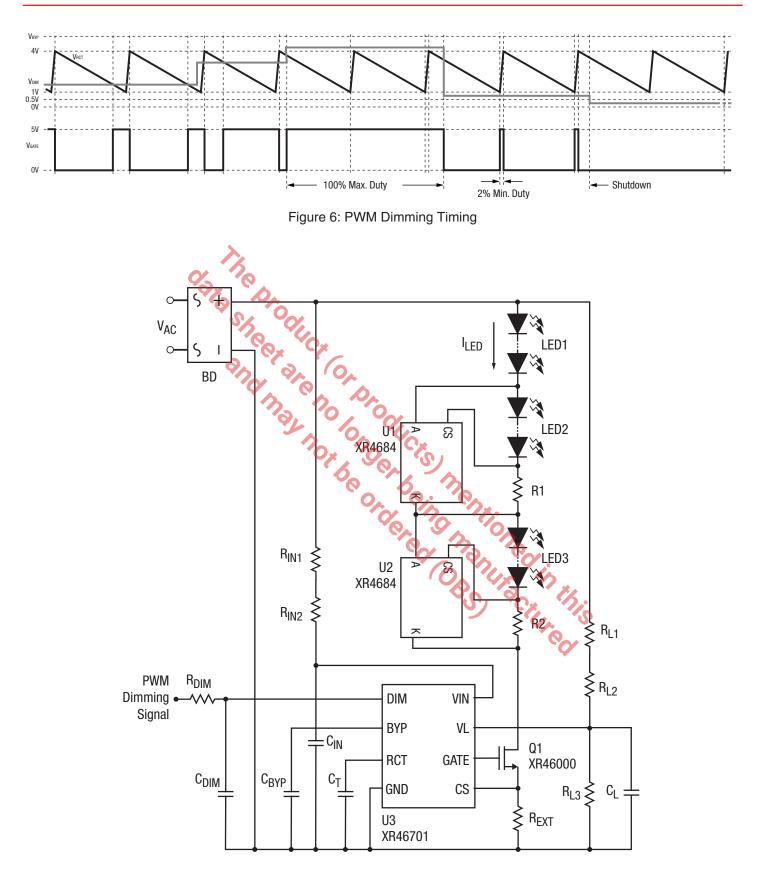
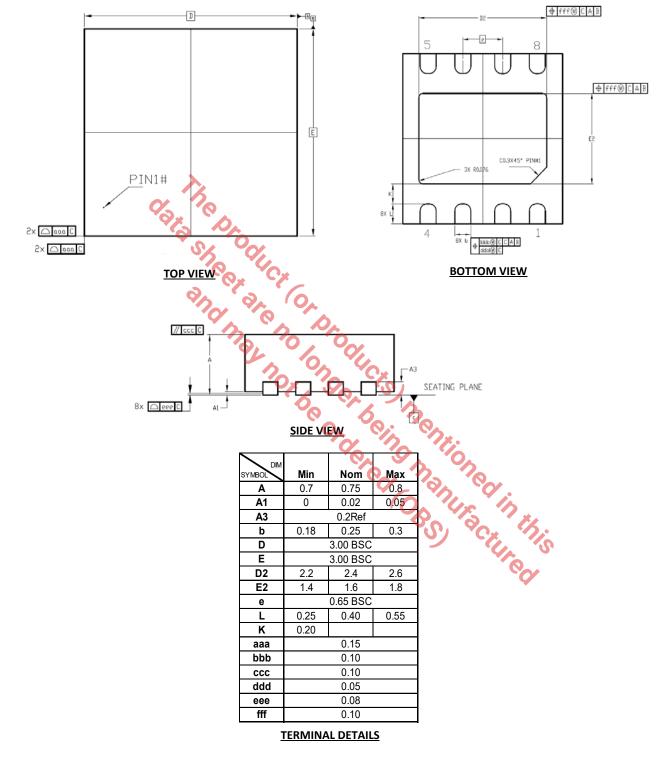
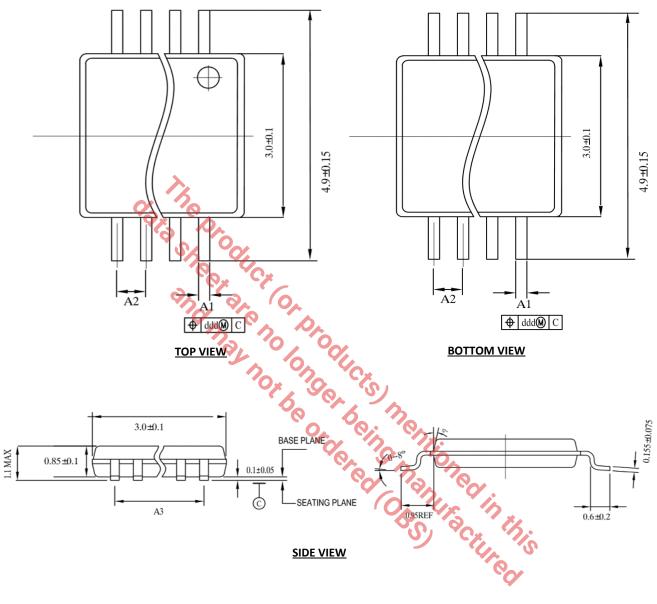



Figure 7: PWM Dimming

Mechanical Dimensions

TDFN-8



- 1. All dimensions are in Millimeters
- 2. Dimensions and tolerance per Jedec MO-220

Drawing No. : POD - 00000088

Mechanical Dimensions (Continued)

MSOP-8

	A1		A2	A3	ddd
LEAD	MIN	MAX			
8LD	0.22	0.38	0.65 BSC	1.95 BSC	0.13

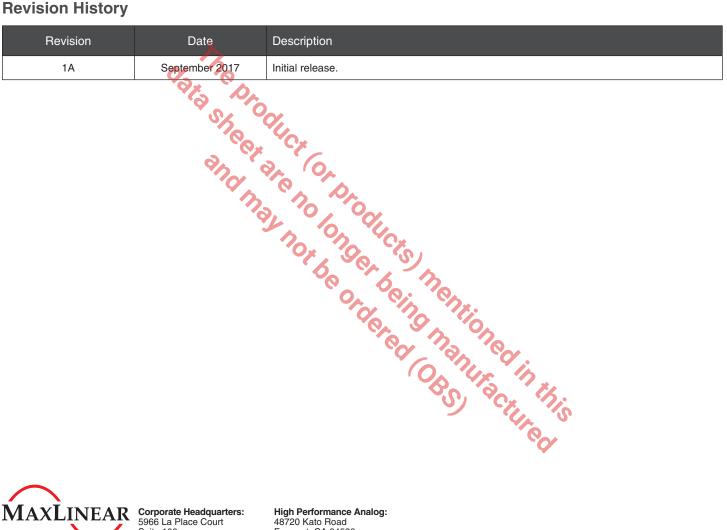
TERMINAL DETAILS

1. All dimensions are in Millimeters

2. Dimensions and tolerance per Jedec MO-187F

Drawing No. : POD - 00000127

Ordering Information⁽¹⁾


Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method
XR46701IHBTR	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	Yes ⁽²⁾	DFN-8	Tape and reel
XR46701IRBTR	$-40^{\circ}C \le T_{J} \le 125^{\circ}C$	fes-	MSOP-8	Tape and reel

NOTE:

1. Refer to www.exar.com/XR46701 for most up-to-date Ordering Information.

2. Visit www.exar.com for additional information on Environmental Rating.

Revision History

Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

Fremont, CA 94538 Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7001 Email: LEDtechsupport@exar.com www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated

© 2017 MaxLinear, Inc. All rights reserved