

Comlinear® CLC1002 Ultra-Low Noise Amplifier

FEATURES

- 0.6 nV/√Hz input voltage noise
- **n** 1mV maximum input offset voltage
- 965MHz gain bandwidth product
- Minimum stable gain of 5
- \blacksquare 170V/μs slew rate
- 130mA output current
- $= -40^{\circ}$ C to $+125^{\circ}$ C operating temperature range
- Fully specified at 5V and \pm 5V supp
- CLC1002: Lead-free SOT23-6

APPLICATIONS

- **n** Transimpedance amplifiers
- **n** Pre-amplifier
- **Example 1** Low noise signal processing
- Medical instrumentation
- Probe equipment
- \blacksquare Test equipment
- **Ultrasound channel amplifier**

General Description

The COMLINEAR CLC1002(single) is a high-performance, voltage feedback amplifier with ultra-low input voltage noise, 0.6nV/√Hz. The CLC1002 provides 965MHz gain bandwidth product and 170V/μs slew rate making it well suited for high-speed data acquisition systems requiring high levels of sensitivity and signal integrity. This COMLINEAR high-performance amplifier also offers low input offset voltage.

The COMLINEAR CLC1002 is designed to operate from 4V to 12V supplies. It consumes only 13mA of supply current per channel and offers a power saving disable pin that disables the amplifier and decreases the supply current to below 225μA. The CLC1002 amplifier operates over the extended temperature range of -40°C to +125°C.

If larger bandwidth or slew rate is required, a higher minimum stable gain version is available, the CLC1001 offers a minimum stable gain of 10 with 2.1GHz GBWP and 410V/us slew rate.

Typical Application - Single Supply Photodiode Amplifier

Ordering Information

Moisture sensitivity level for all parts is MSL-1.

CLC1002 Pin Configuration

CLC1002 Pin Assignments

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Reliability Information

Notes:

Package thermal resistance (θ_{JA}), JDEC standard, multi-layer test boards, still air.

ESD Protection

Recommended Operating Conditions

Electrical Characteristics at +5V

 $T_A = 25$ °C, $V_S = +5V$, $-V_S = GND$, $R_f = 100Ω$, $R_L = 500Ω$ to $V_S/2$, $G = 5$; unless otherwise noted.

Notes:

1. 100% tested at 25°C

Rev 1G

Electrical Characteristics at ±5V

T_A = 25°C, $V_s = \pm 5V$, R_f = 100 Ω , R_L = 500 Ω , G = 5; unless otherwise noted.

Notes:

1. 100% tested at 25°C

Typical Performance Characteristics

T_A = 25°C, $V_s = \pm 5V$, R_f = 100 Ω , R_L = 500 Ω , G = 5; unless otherwise noted.

Non-Inverting Frequency Response Inverting Frequency Response

Typical Performance Characteristics

T_A = 25°C, $V_s = \pm 5V$, R_f = 100 Ω , R_L = 500 Ω , G = 5; unless otherwise noted.

Non-Inverting Frequency Response at $V_S = 5V$ Inverting Frequency Response at $V_S = 5V$

T_A = 25°C, $V_s = \pm 5V$, R_f = 100 Ω , R_L = 500 Ω , G = 5; unless otherwise noted.

Input Voltage Noise \blacksquare Input Voltage Noise at V_S = 5V

 $T_A = 25$ °C, $V_s = \pm 5V$, $R_f = 100\Omega$, $R_L = 500\Omega$, $G = 5$; unless otherwise noted.

2nd Harmonic Distortion vs. R_L 3rd Harmonic Distortion vs. R_L

 $T_A = 25$ °C, $V_s = \pm 5V$, $R_f = 100\Omega$, $R_L = 500\Omega$, $G = 5$; unless otherwise noted.

 $T_A = 25$ °C, $V_s = \pm 5V$, $R_f = 100\Omega$, $R_L = 500\Omega$, $G = 5$; unless otherwise noted.

Small Signal Pulse Response S mall Signal Pulse Response at V_S = 5V

T_A = 25°C, $V_s = \pm 5V$, R_f = 100 Ω , R_L = 500 Ω , G = 5; unless otherwise noted.

Enable Response at $V_S = 5V$ Disable Response at $V_S = 5V$

Application Information

Basic Operation

Figures 1 and 2 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations.

Figure 2. Typical Inverting Gain Circuit

Achieving Low Noise in an Application

Making full use of the low noise of the CLC1002 requires careful consideration of resistor values. The feedback and gain set resistors (R_f and R_g) and the non-inverting source impedance (R_{source}) all contribute noise to the circuit and can easily dominate the overall noise if their values are too high. The datasheet is specified with an R_α of 25Ω, at which point the noise from R_f and R_q is about equal to the noise from the CLC1002. Lower value resistors could be used at the expense of more distortion.

Figure 3 shows total input voltage noise (amp+resistors) versus R_f and R_q . As the value of R_f increases, the total input referred noise also increases.

The noise models must be analyzed in-circuit to determine the effect on the op amp output noise.

Since noise is statistical in nature rather than a continuous signal, the set of noise sources in circuit add in an RMS (root mean square) fashion rather than in a linear fashion. For uncorrelated noise sources, this means you add the squares of the noise voltages. A typical non-inverting application (see figure 1) results in the following noise at the output of the op amp:

$$
e_o^2 = e_n^2 \left(1 + \frac{R_f}{R_g} \right)^2 + in^2 R_s^2 \left(1 + \frac{R_f}{R_g} \right)^2 + i_i^2 R_f^2
$$

op amp noise terms e_n , i_n and i_i

$$
+ e_{Rs}^2 \left(1 + \frac{R_f}{R_g} \right)^2 + e_{Rg}^2 \left(\frac{R_f}{R_g} \right)^2 + e_{Rf}^2
$$

external resistor noise terms for R_S , R_q and R_f

High source impedances are sometimes unavoidable, but they increase noise from the source impedance and also make the circuit more sensitive to the op amp current noise. Analyze all noise sources in the circuit, not just the op amp itself, to achieve low noise in your application.

Power Dissipation

Power dissipation should not be a factor when operating under the stated 500Ω load condition. However, applications with low impedance, DC coupled \triangle loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range. **and may note that maximum** and **a** be ordered to the beyond it's intended boads be ordered. Guidelines listed by power rails or V_{sur} in the power of the beyond it's intended by power rails or V_{sur} the absolute

Maximum power levels are set by the absolute maximum junction rating of 150°C. To calculate the junction temperature, the package thermal resistance value Theta_{JA} (Θ _{JA}) is used along with the total die power dissipation.

$$
T_{\text{Junction}} = T_{\text{Ambient}} + (\Theta_{\text{JA}} \times P_{\text{D}})
$$

Where T_{Ambient} is the temperature of the working environment.

In order to determine P_D , the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.

$$
P_D = P_{\text{supply}} - P_{\text{load}}
$$

Supply power is calculated by the standard power equation.

$$
P_{\text{supply}} = V_{\text{supply}} \times I_{\text{RMS supply}}
$$

$$
V_{\text{supply}} = V_{S+} - V_{S-}
$$

Power delivered to a purely resistive load is:

$$
P_{load} = ((V_{LOAD})_{RMS^2})/Rload_{eff}
$$

©2007-2013 Exar Corporation 14/17 Rev 1G The effective load resistor ($Rload_{eff}$) will need to include the effect of the feedback network. For instance, Rload_{eff}

in figure 3 would be calculated as:

$$
R_L \mid \mid (R_f + R_g)
$$

 $\frac{2}{R_f}$ external resistor noise terms for Riese measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_D can be found from

$$
P_D = P_{Quiescent} + P_{Dynamic} - P_{Load}
$$

Quiescent power can be derived from the specified I_S values along with known supply voltage, V_{Supply}. Load power can be calculated as above with the desired signal amplitudes using:

$$
(V_{LOAD})_{RMS} = V_{PEAK} / \sqrt{2}
$$

$$
(I_{LOAD})_{RMS} = (V_{LOAD})_{RMS} / \text{Rload}_{eff}
$$

The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:

$$
P_{DYNAMIC} = (V_{S+} - V_{LOAD})_{RMS} \times (I_{LOAD})_{RMS}
$$

Assuming the load is referenced in the middle of the power rails or V_{supply}/2.

Figure 4 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

Figure 4. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, Rs, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 5.

Figure 5. Addition of R_S for Driving Capacitive Loads

Table 1 provides the recommended R_S for various capacitive loads. The recommended R_S values result in <=1dB peaking in the frequency response. The Frequency Response vs. C_L plots, on page 7, illustrates the response of the CLC1002.

C_L (pF)	$R_S(\Omega)$	3dB BW _(MHz)	Figure 6. Overdrive
10	43	275	Layout Considerations
22	30	235	General layout and supply bypas
47	20	190	high frequency performance. Exa
100	12	-46	to use as a guide for high freque
470	4.3	72 ⁷	device testing and characterization
			as a basis for high frequency layo
Table 1: Recommended R _S vs. C _L			Include 6.8µF and 0.1µF ceran
For a given load capacitance, adjust RS to optimize the			supply decoupling
tradeoff between settling time and bandwidth. In general,			Place the 6.8pF capacitor within 0.7
reducing R _S will increase bandwidth at the expense of additional overshoot and ringing.			Place the 0.1µF capacitor within 0.1
			Remove the ground plane unde
Overdrive Recovery			especially near the input and
An overdrive condition is defined as the point when either			parasitic capacitance
one of the inputs or the output exceed their specified			Minimize all trace lengths to red
voltage range. Overdrive recovery is the time needed for			Refer to the evaluation board
the amplifier to return to its normal or linear operating		information	

Table 1: Recommended R_S vs. C_I

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLC1002 will typically recover in less than 25ns from an overdrive condition. Figure 6 shows the CLC1002 in an overdriven condition.

Figure 6. Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. Exar has evaluation boards to use as a guide for high frequency layout and as aid in device testing and characterization. Follow the steps below as a basis for high frequency layout: The (us)

The (us)

The product Considerations

The product Considerations

The product and supply bypassin

The product and supply bypassin

The product and supply bypassin

The product cessing and characterization. F

Th

- Include 6.8µF and 0.1µF ceramic capacitors for power **Osupply decoupling**
- Place the 6.8µF capacitor within 0.75 inches of the power pin
- Place the 0.1µF capacitor within 0.1 inches of the power pin
- **Example 5 Remove the ground plane under and around the part,** especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances

Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 7-11. These evaluation boards are built for dual- supply operation. Follow these steps to use the board in a single-supply application:

- 1. Short -Vs to ground.
- 2. Use C3 and C4, if the $-V_S$ pin of the amplifier is not directly connected to the ground plane.

Figure 8. CEB002 Top View

Figure 11. CEB003 Bottom View

 \cap

Mechanical Dimensions

SOT23-6 Package

For Further Assistance:

Exar Corporation Headquarters and Sales Offices 48720 Kato Road Tel.: +1 (510) 668-7000 Fremont, CA 94538 - USA Fax: +1 (510) 668-7001 www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any
circui EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or dam

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.